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Abstract

English

With the development of robots for the general public and their usage outside of factories, they
would have to interact with humans in a closer way, further from the controlled environment of the
laboratories or factories. To improve the interaction between humans and robots, to make them
closer to a partner than just automate nay a tool, they have to take advantage of the environmental
data.

In this thesis, we will explore with two robotic projects how we can create scenarios where
the robots change their behaviour according to, either, the user’s emotions or the weather data.
The first project uses an industrial robot, that has no initial purpose for social interactions. The
scenario was created to have no prior training from the user, and to achieve a very specific task
during a fair in Japan with the general public. The answer from about 200 participants was
gathered with four questionnaires to gather their opinion about the scenario. Results suggest that
participants considered our proposed scenario as enjoyable, safe, and interesting. For the second
project, we created from scratch an abstract presence robot for the home. With the aim to serve as
a link between a couple in their home, for a long-term interaction. This robot, called Yokobo, uses
non-verbal expressive means of communication (movement and light), and weather data to change
its behaviours. Two two-week experiments were done in our laboratories to evaluate the robustness
and usability of Yokobo and the perception and reception of the participants. The results show
that Yokobo can sustain long-term interaction and serve as a welcoming partner. In order to be
integrated inside the home, a smartphone application has been developed and tested to configure
the Raspberry Pi (the central unit of Yokobo) without using a screen, mouse or keyboard. The
solution was tested with 11 users that managed to configure the robot by themselves. Finally, for
the purpose of long-term interaction, we propose a solution to adapt the behaviours of Yokobo
from the world data thanks to a causal representation, and a reinforcement learning algorithm to
create the action.

Keywords: human-robot interaction, social robotics
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Francais

Titre: Etude de différents moyens d’interaction entre les humains et les robots en utilisant les
données de I’environnement pour en changer le comportement

Avec le développement des robots pour le grand public et leur utilisation en dehors des usines,
ceux-ci devront interagir avec les humains d’une maniére plus proche, loin de l’environnement
controlé des laboratoires ou des usines. Pour améliorer I'interaction entre les humains et les robots,
et pour les rendre plus proches d’un partenaire que d’un simple outil automatisé, ils devront tirer
parti des données de leur environnement.

Dans cette thése, nous allons explorer, avec deux projets robotiques, comment nous pouvons
créer des scénarios ou les robots modifient leur comportement en fonction, soit des émotions de
Iutilisateur, soit de données météorologiques. Le premier projet utilise un robot industriel, qui
n’a pas été congu initialement pour avoir des interactions sociales. Le scénario a été créé pour que
les utilisateurs n’aient pas besoin de formation initiale, et pour accomplir une tache trés spécifique
lors d’une exposition au Japon ouvert au grand public. Les réponses d’environ 200 participants
ont été recueillies & ’aide de quatre questionnaires destinés a recueillir leur opinion sur le scénario.
Les résultats suggérent que les participants ont considéré le scénario proposé comme agréable, sir
et intéressant. Pour le deuxiéme projet, nous avons créé de zéro un robot de présence abstrait
a destination de la maison. L’objectif est, ici, de servir de lien entre les membres d’un couple a
son domicile, avec une interaction de long terme. Ce robot, appelé Yokobo, utilise des moyens de
communication expressifs non verbaux (mouvement et lumiére), et des données météorologiques
pour modifier son comportement. Deux expériences de deux semaines ont été réalisées dans nos
laboratoires pour évaluer la robustesse et ’ergonomie de Yokobo, ainsi que la perception et la
réception des participants. Les résultats montrent que Yokobo peut soutenir une interaction a
long terme et servir de partenaire accueillant. Afin d’étre intégré a 'intérieur de la maison, une
application smartphone a également été développée et testée pour configurer la Raspberry Pi
(Punité centrale de Yokobo) sans utiliser d’écran, de souris ou de clavier. La solution a été testée
avec 11 utilisateurs qui ont réussi & configurer le robot par eux-mémes. Enfin, dans le but d’une
interaction a long terme, nous proposons une solution pour adapter les comportements de Yokobo a
partir des données du monde (environnement) grice a une représentation causale, et un algorithme
d’apprentissage par renforcement pour mouvoir Yokobo ainsi que changer la couleur de sa lumiére.

NB: seul le résumé (abstract) est traduit en frangais, le reste de la theése est en anglais.

Mots-clefs: interactions humain-robot, robotique sociale
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Chapter 1

Introduction

troencephalogram, for the Human-Robot Interaction (HRI), to go beyond the social

robotics [6]. With the same aim of exploring the HRI further, I started this PhD thesis
on their improvement. With the objective to have a robot that understands the user’s actions,
behaviour or emotion, and then interacts in the best way possible.

This thesis is led by three projects to achieve the aforementioned goal. In a preliminary work
(chapter 3), work has been done with an industrial robot to learn the reaction of the users with
a robot that has no first aim to do social interactions. In that scenario, the robot has to read
users’ emotions to adapt its own behaviours. The second project (see chapter 4) is the creation of
a presence robot for the home entrance, with the aim to strengthen the link between two people in
their household. Using a robot at home (or in the lab for the experiment, see chapter 5), allows
us to see how people react when they have to interact with a robot on daily basis. Moreover, the
built robot is only using non-verbal behaviours, in order to explore another part of HRI. Finally,
using this platform, an algorithm has been developed to create an adaptive reaction by the robot
(see chapter 7), according to the user’s action and environment data (such as weather). Before
detailing those three projects, this introduction chapter will sum up the current state of the art in
social robotics; moreover, the chapter of each project will also do so in their specific area.

DURING my master’s degree project, I studied the impact of unusual sensors, namely elec-

1.1 Social Robots

1.1.1 History

Already during Ancient history, like in Greece, humanity was creating complex mechanisms, called
automatons, to execute tasks. Such as the Antikythera mechanism which is the first known ana-
logue computer, used to predict astronomical positions, but also the automata of Hero of Alexan-
dria. He created several mechanisms, presented in his mechanical treatise called Automata [7], such
as the theatres. With small characters, they could recreate life-like scenes for entertainment [8].

But we had to wait until the 15th century, with the rediscovery of the past knowledge in the
Western World, and with the development of clock-making, to see increasingly sophisticated au-
tomata appear. One can mention Strasbourg’s astronomical clock!, that, besides displaying the
time and other calendar-related data, has some animated characters turning around at specific mo-
ments of the day. Then we can mention the Jaquet-Droz automata in the 18th century, mimicking
humans playing music, writing or drawing [9]. The inventors had the wish to create mechanisms
that could reproduce the complexity of the human being. This desire led some to create hoaxes,
such as the famous Mechanical Turk [10], contemporaries thought it was an automaton with the
capability to beat human players at chess. Instead, it was just a puppet manipulated by a person
hidden in the machine.

Nonetheless, those mechanisms had the limitation of being not programmable, the action done
were always the same. At the beginning of the 19th century, Joseph Marie Jacquard created the

1The second version is from the 16th century, but a previous one was made during the 14th century.
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Figure 1.1: Timeline of some steps in the robotic history. Concerning the recent time, we focus on
successful commercial robots.
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eponymous loom [11]. Using punched cards, it opened the way for adaptable automata, that could
change their behaviour according to the needs of the user. During the same century, Charles
Babbage conceptualised the analytical engine, a mechanical computer using Jacquard’s punched
cards as inputs; opening the way for modern computers [12].

Finally, with the development of electronics at the beginning of the 20th century, the increased
and firsts electronic automata appeared, which will now be called robots, from the Czech robota
meaning forced labour. Nowadays, the main difference with the automata is the programming, the
robot can adapt their tasks according to inputs and be reprogrammed. During the 19th century,
the robot industry is grown exponentially, with different kinds adapted to many domains, for the
industry, home, emergency... Still, with the wish to recreate a human, androids are as old as the
robot word itself, such as Eric made by William Richards and Alan Reffell. Then comes robots
that have to deeply interact with humans, in a similar way as another person would do, to have
social interactions and then called social robots.

1.1.2 Definition

The definition of a social robot can vary amongst roboticists, as mentioned by [13]. We will present
here the definition we will use in this thesis. As a first base, we can use the definition from the
International Journal of Social Robotics:

Social Robotics is the study of robots that interact and communicate among themselves,
with humans, and with the environment, within the social and cultural structure at-
tached to their roles.

— International Journal of Social Robotics [14]

Social Robot (SR) are designed to achieve many purposes, such as care [15], entertainment [16],
education, or personal assistance [17]. Their modes of interaction with humans are diverse, like
voice, screen, or gestures. Similar to human beings, robots can also transmit social cues [18] and
express emotions [19] through movement, and not only by voice or face. In recent years, more
and more robots have been made with the main purpose of interacting with people, and not doing
simple tasks like assembling, packing (for industrial robots), hoovering or moving (for chore robots).
Even if all those robots somehow interact with humans, they are limited to receiving instructions.

One can mention several recent commercial robots made to have social interactions (see Fig-
ure 1.1), with one of the pioneers: AIBO from Sony [16]. This dog robot was created to be used
as its living counterpart, and to have interactions like them. The main function of AIBO is en-
tertainment, and they “communicate among themselves, with humans, and with the environment,
within the social and cultural structure attached to their roles [being a dog|”. Even if AIBO was
created for entertainment, people used it in other ways, such as football [20] or care [21]. Social
robots, that have been made for interaction, are more prone to be used in other ways than their
original goal; contrary to hoover robots, or industrial ones (even if we will see in the next chapter
that is still feasible).

We can continue with robots that were made with one main function where social interactions
are used, such as Paro from AIST [22, 23] and Pepper from SoftBank Robotics [24]. The first
one is a therapeutical robot used to comfort and help old people by interacting with it as they
would do with a pet, without the constraints of a real animal (hygiene, food, need to care...). Paro
adapts its behaviours according to the patient’s humour, like would do a real animal and a fortiori
human. The robot is no more a simple object but can be personified by the user and be considered
a member of the family. Thereby, users attached so much importance to their AIBO companion
that they offered him a funeral ceremony when it dies [25]. Moreover, the personification can lead
people to interpret some behaviours in a manner is was not programmed, see chapter 5 or to justify
some reaction of the robot; e.g. mentioned that children explained to the researcher that AIBO
was tired to justify its no reaction [26].
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Pepper, on the other hand, was made to welcome people in stores or exhibitions as a receptionist.
Contrary to AIBO and Paro, it is also using voice to communicate making its interaction deeper,
in addition to its chest-screen. Even if it was mainly used as a receptionist at the beginning,
developers and researchers tackle it and create diverse usages such as teaching [27, 28], or care [29].
In those fields, sociality is important to achieve their task and help to see the robot as more than
just a tool. Another example is the robot Nao from Aldebaran Robotics [30], mostly used as a
development platform for teaching robotics or for research, it is used in many projects. In addition
to football like ATBO [20], it has been used in a TV show in France to act as a commentator and
interact with the public and the (human) presenter [31]. It has also been used to help therapists
to interact with children with autistic disorders [32, 33], using the ability of the robot to be similar
to a human in his way of interacting.

Finally, we can mention avatar robots, such as Orihime [34] or Double [35]. Even if they are
not autonomous and rely solely on the user, they are used to achieve social interactions when it is
not possible otherwise, because of illness, for Orihime, or distance for Double.

Therefore, by using all of those examples, we can highlight what is a social robot and it will
be used as a definition for the rest of this manuscript:

1. SR should interact with people besides their main task, deeper than just receiving
instructions or giving information.

2. SR can be seen as more than just a tool and be personified, nay as a companion.

3. SR should move, at least. Verbal behaviours are not mandatory.

We can notice that personification is a necessary but not sufficient condition. Indeed, anything
can be personified in some cases, even a computer, especially when it is not working “why are you
crashing?”

1.2 Interaction With Robots

The way the robots are interacting is also important. Thus like
humans, that not only use voice to interact but also gestures, gaze,
and facial expressions..., a robot also has to take advantage of the
movement. As mentioned before, we can also transmit some emo-
tions in the movement, even unconsciously. To be considered as
a robot and not just an object, or an enhanced AI (such as a Vo-
cal Assistant (VA)), it should be able to use movement to express
itself. Hence, in the case of a receptionist Pepper, if it was not
moving its arms/head, it could also not complies with the first
point of the definition. Indeed, the voice or screen would be here
only to execute the main task: giving information. The hand ges-
tures add another level of interaction. Moreover, as it will be more Figure 1.2: Example of a long-
exhaustively explained in chapter 4, it is not required to have a term experiment in school with
humanoid/zoomorphic shape to create a social robot. Since the children and the robot Pep-
movement is enough to communicate emotion, an arm is, for in- per [27]

stance, enough to transmit social clues [36]. However, social inter-

actions can also be added to the speech with unneeded sentences to accomplish the main task, such
as “How are you?”, “ You look good today”, “I remember you like coffee, so please find the nearby
coffee shops”. Those little attentions make the robot more human, a social being and not just a
machine.

The detection of human emotions or expressions is also important to manage good HRI, hence,
Hayashi et al. also studied the impact of the transmission of emotion to a robotic arm by touch [37],
the participant got a better impression of the robot with the touching capabilities, and the re-
searchers could detect the transmitted emotions. Spezialetti et al. identified three main axis into
the robot-and-emotion field [38]:
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1. Formalisation of robot’s emotional state.
2. Expression of this state.
3. Inferring human’s emotional state.

In order to “make the interaction more intuitive, genuine, and natural”. The transmission of
emotions, along with the understanding of people’s emotions is important to create a two-way
interaction. Henschel et al. mentioned that is one of the key components of SR: “ When a robot
failed to [respond to a human in a social manner]|, people were disappointed and experienced a sense
of dissonance”, in addition, the robot should be able to “display thoughts and feelings” [13].

Finally, another dimension that is important with SR is time. Indeed, in most cases, we will
interact with those robots for a long time, and repetitively, especially if we want to bring them
into our homes. That is why in this thesis the experiments last for a long time (during several days
or two weeks) and also in the wild to have a glimpse of how people react with SR in unscripted
scenarios. Already in 2013, Leite et al. realised a survey on long-term interaction with robots,
even if some of them, like Roomba, are not social robots [39]. For the robots used for care and
education, the duration of the interactions depends on the medical session or class duration as well
as the repetition of use.

Thence, one of the two objectives of this thesis is to explore the HRI with non-
verbal behaviours on a long-time basis and in a wild environment, and how to improve
them.

1.3 Application of Social Robots

Leite et al [39] identified four environments where social robots
were used: health care, education, work environment and public
space, and home. And we can find a similar trend if we analyse the
use, for example, of the Nao robot in the recent literature, most
of the applications concern the health and education domains. If
we do a small review on the XPlore search engine from IEEE with
the keyword ‘Nao robot’ in the last five years, 202 results emerged
and most of them (130) concern technical solutions to improve, for
example, the walk, or object detection. The rest (72) is divided
into 5 domains presented in Figure 1.4, and a third of the studies
concern the health and education fields. The robot is often used as
a middleman or a companion in health therapy, or as a catalyser for
education. Indeed those domains require a lot of social abilities,
and then a normal robot would be less convenient?. However,
no research uses the capabilities of Nao at home on a daily basis
(besides for therapy). To highlight the importance that having the
health and education fields for SR, we can mention the case of the
robot Jibo [41], which was originally made as a personal assistant
for the home, but after the purchase of the project by the Nippon
Telegraph and Telephone company (NTT) has been changed to be
used for health or education [13].

Chapter 6 will sum up the recent (social) robots used in a home
context. As a first example of an experiment at home, there is
Fribo [42], a social networking robot used to share with friends
Figure 1.3: Two LOVOTSs [40]  the activities of each one while living in their apartment. Even

if it does not comply with our earlier definition, because it is not
moving, we can still analyse the concept. The robot is used here to be an enhanced social network,
without therapy/education aim. It is used as a catalyser in the relationship between the group of
friends and helped them to bring some topic to discuss when they meet up face to face. Most of the

2Even if one can find logistic robots in hospitals or pharmacies.
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Figure 1.4: Number of studies in IEFE Xplore regarding Nao robot the last 5 years. The health category
concern mostly therapist robots for autistic children, or to be a companion for old people in retired houses.
The entertainment robot comports studies to improve the capabilities of Nao in the RoboCup. The “work”
study concerns a case where Nao pretends to work in a supermarket to see the effect of explicit emotional
adaptation.

current social robots for the home are either for entrainment® (AIBO) or assistant robots like the
first version of Jibo, Elliq [17] or Nabaztag/Karotz [43]; being close to the current vocal assistant,
such as Amazon Alexa or Google Assistant. Another more disruptive robot is LOVOT [40, 44],
build to be a companion in the home and interact without verbal behaviours (it can use some
sound reactions, such as tweeting). With more advanced AI than the previous robots to create
more natural behaviours than AIBO for instance, its goal is to really replace a pet. It can be used
in pairs, and in that case, both of them will have a different personality and interact differently,
having also, in addition to HRI, robot-robot interactions. Since this robot is new (2018) no studies
on its impact on long-term interaction, and the expectation of the users exists; but we can already
find experiment for therapy with dementia patient [45], showing again the importance of health
for the social robots.

Therefore, the second objective of this thesis is to explore the use of SR in domains
that are less common, i.e. not for therapy or education, but, for example, in the home
or work environments.

1.4 Motivation

Nowadays, the expectation people have about robotics is mostly shaped by Science fiction, where
they interact freely with humans, see some examples in Figure 1.5. Their social interaction is
similar to the one between humans, even if the shape is not humanoid. The imaginary portrayed
in those works are often a world where humans and robots live in a close relationship, where robots
are no more than just a tool. Whether those interactions are positive (e.g. Baymax, Fig. 1.5a or
WALL-E, Fig. 1.5d) or dystopic (e.g. I, Robot, Fig. 1.5¢c or Terminator).

My goal, and the motivation of this thesis, is to lay one stone on the bridge that will close
this gap between the perception and wishes that people have about robots in their way to interact
with them, and the current reality. Nowadays, HRI is similar to the one with VA: a scripted
communication. If the user does not follow the preset pattern, the agent either does not understand
(“Sorry, I didn’t understand”) or do something else. Thereby, we will try to explore how to make
the interactions smoother, and novel kinds of interactions do not focus on voice only. But also
to see how the general public perceives robots, indeed, even if they are getting more and more
common, they are still rare in one’s home; similar to the TVs during the 1950s.

That can lead to the following General Research Question (GRQ):

3Here we can include being a companion in this group.
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Figure 1.5: Example of popular robots from Science fiction

GRQ How can we develop robotic systems that can communicate with humans in a
more versatile manner, using less automatism by using their environmental data
to change their behaviours?

We will reply by looking at different angles of the problem in the two main projects described
in this thesis, each of them with its own sub-research questions. Using the environmental data
(people’s emotions, current temperature...) is a key in human-human interactions. If a robot keeps
the same behaviours all the time, it becomes predictable for the user that have difficulties to see a
social partner, but more an automaton.

1.5 Outline of the Thesis

The thesis manuscript is organised as follow: in chapter 2 we will describe how to create a ques-
tionnaire for experiments involving robot interacting with people, and the different tools available.
Chapter 3 will present the experimentation of an industrial robotic system used outside factories,
with the development of cognitive capabilities. Chapter 4 will describe the design and creation of
a presence robot for the home, and in chapter 5 will be presented the technical evaluation of the
robot. Chapter 6 details the creation of a smartphone application in order to integrate the robot
into the smart home of the user, in an easy way. Chapter 7 will present an algorithm made for
having long-term interactions with the robot developed in the previous chapters. Finally, chapter 8
will conclude this manuscript.



Chapter 2

Design of the Experiments

protocol for their experiments. Their goal is to be able to compare their new methods with
state-of-the-art or to prove the efficiency of their work. Then, before going to each project, we
will see how to evaluate them and what kind of different tool exists for evaluating social robotics.
In the domain of HRI, the questionnaires are a common tool, since we evaluate the interactions
a person had with a robot. Even if each study is different, it exists similarities between their
questionnaires. Indeed, Rueben et al. [46] do not recommend creating one’s own questionnaire
from scratch, but rather reusing (and adapting) questionnaires that answer the selected concepts in
previous studies. Then, some standardised questionnaires exist. But like a Lego game, researchers
generally combine different blocks together to create the form that will fulfil their needs, as we will
do in this thesis.
We follow the process described by Rueben et al. [46] to create a questionnaire suitable for the
experiment, see Figure 2.1.

IN order to prove the efficiency of their methods, researchers need metrics and create a specific

Formulating Identifying

Searching
relevant
scale(s)

(Adapting Pilot testing Validating

research relevant

s ] scales) scale(s) scale(s)

Figure 2.1: Standardised process for using questionnaires in HRI research, adapted from [46]

Even if the questionnaire seems to be a good tool to evaluate the HRI, and grasp the point of
view of the participants, some other way exists. For example, physiological sensors can be used,
such as electrocardiogram, electroencephalogram, or eye tracking. In the case of this thesis, we
will see in chapter 5 that the logs of the robot are also used. The questionnaires are one metric,
but not the only one, they have for them their simplicity of usage for the participants, but they
require to be well constructed to be relevant.

2.1 Research questions & Relevant concepts

The first step of the process described in Figure 2.1, is to find the research questions and the
relevant linked concepts. Since it depends on each experiment, it will be done on each relevant
chapter (3, 6 and 5). Since each of them belongs to the same topic of social robotics and is testing
close concepts, we can do here a literature review of the relevant scale for our field, and then use
some of them in the experiments. We will see that each experiment shares some tools even if the
research questions are different.

We can mention some concepts that will be studied in this thesis:

Naturalness The definition of the naturalness of a movement could seem as obvious at first
sight, but it is in fact more complex. Like the definition of life. Everyone can tell what
is alive or not, but when we try to create a precise definition, it is more complex. The
studies that evaluate the naturalness of movements often concern anthropomorphic ones.
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For example, Knopp et al. [47] compared the generated motion of their primitive model
with actor movements. In order to evaluate the naturalness of the moment, they display
to participants, at the same time, the same movement done by the two methods on an
avatar. Then, they simply asked participants: “On which side did you perceive the
more natural movement?”. similarly, Aransih and Edison [48] evaluate the naturalness
of movements done by autistic persons by comparing them with neurotypical motions. In
addition to asking if the participants felt the movements were natural, they add a second
question: “Are you certain of your perception?”. This second question adds more
precision to the binarity of the first one.

Legibility A robot action is defined as legible if its intentions are understandable by hu-
mans [49]. Indeed, when humans observe an action, they matched it with the internal
representation they made of it. If this action is different from what they expected, they
would perceive it as unnatural [48].

Predictability Strongly linked with the previous concept. Considering people create a mental
representation of the action, if this representation matched the actual action, the person
would have predicted the action. Actually, most of the studies measuring legibility are mea-
suring predictability [49].

Perception of the robot/behaviours It is defined as the identification and interpretation of
the robot and its behaviour. Because the body motions can also transmit emotions [50], it
also implies the perception of the latter. Those mechanisms are done implicitly by humans.
Concerning this concept, it can be related to robots in general or the robot that is evaluated.

Usability Is not only linked to robots, but to any system and refers to how a system is easy or hard
to use. It can be linked to the similar concept of user-friendliness for software or websites.
For a new product, it permits to the designers to observe if the users have difficulties with
using it or not; and then doing the suitable corrections.

2.2 Relevant Scales & Tools

The next step of the process is to look for the relevant scales and tools. Hence, a literature
review of studies in HRI evaluation has been done and several scales emerged. Based also on
the previous works done in the lab, where, for example, the emotion of a generated motion has
been evaluated with a questionnaire [51, 52]; since body movements transmit also emotions [50].
Additional parameters that might influence the perception of the movement are the personality
of the person and their familiarity with robots. Based on the literature, different metrics can be
used to evaluate the perception per se, or concept that influences it, the legibility /predictability
and usability.

2.2.1 Likert Scale & Semantic Difference Scale

Both scales are similar in their construction, using point on an axis, from 1 to N, see Figure 2.2.
The number of points N vary depending on the study, generally, it is an odd number in order to
allow a neutral answer, but some studies can use an even number to force the participant to make
a choice, called asymmetric scale [53]. The common values for N are 5 or 7 nay 9; in this thesis,
the 5-point scale will be used.

The Likert scale [54] made in 1932 by Rensis Likert evaluates the answer to a question from
Totally Disagree (1) to Totally Agree (N), and became one of the most popular ways to ask ques-
tions in forms, and not only for robotics. On the other hand, the Semantic Difference (SD) scale?
uses the axis to evaluate the participant’s opinion between two opposite adjectives, such as small—
big or slow—fast. In order to select the items of this questionnaire, we follow recommendations
presented in the Kansei Engineering ergonomics discipline [567 ]. Kansei Engineering is a suitable
human-centred and ergonomic approach often used to grasp and analyze the emotional, need, and

L Also called Godspeed scale [55]
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Figure 2.2: Example of a 5-point Likert and Semantic scales. The Adjective stands for the opposite of
Adjective

social values of people towards products, interfaces, and services [57]. The first step in developing
a self-reporting questionnaire is to collect a certain number of emotional words and adjectives that
are relevant to the design of some specific product or application. Therefore, these adjectives can
vary according to the application domain [56]. Additionally, these adjectives can be obtained after
consulting experts in the domain or reviewing state-of-art articles.

For example, Dragan et al. used a 7-point Likert scale to evaluate the predictability of a robot
motion, if it matches the expectation of the participants [58]. Eyssel et al. also used a 7-point
Likert scale as an evaluation tool. Finally, Lichtenthéler et al. reviewed the literature about the
legibility of robots, and the Likert is a mentioned tool with a 5-point and 9-point scale.

2.2.2 Negative Attitude towards Robots Scale

The NARS [59, 60| is a questionnaire made of 14 questions (see Figure 2.3) using 5-point Likert
scale, in order to evaluate the feeling of people regarding robots. Thanks to this scale, we can
observe if there is any bias in the relationship people have regarding robots. We can hypothesise
that people that are not familiar with robots or even afraid will have more difficulties interacting
with them. According to [61], NARS is the most popular questionnaire used in robotics to measure
attitudes towards robots. These questions are classified into three sections: NARS-S1, NARS-S2,
NARS-S3. Generally, the average value of these three sections is calculated and reported separately.
These average values range between 1 to 5. The NARS-S1 section is composed of six questions
and is designed to obtain attitudes toward situations of interactions with robots. The NARS-S2
section is composed of 5 questions and is designed to obtain attitudes toward the social influence of
robots. Finally, the NARS-S3 section is composed of 3 questions and is designed to obtain attitudes
toward emotions in interaction with robots [62]. Then, NARS-S1, NARS-S2, and NARS-S3 values
are combined (average) to obtain the general NARS score?, which value is also between 1 to 5.

2.2.3 Godspeed questionnaire

The Godspeed questionnaire [63] is a questionnaire used to gather the impression of the participants
about the robot using a semantic 5-point difference scale where the adjectives have already been
chosen (to be reusable). The questionnaire is divided into five sections, about anthropomorphism,
animacy, likeability, perception of intelligence and perception of safety. It contains, in total, 24
questions, and has been translated into several languages (about a dozen).

2Because the NARS-S3 is using positive questions, contrary to others, the five-complement has to be used
(6 — score) before calculating the global score.

10
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(S2) T would feel uneasy if robots really had emotions.

(S2) Something bad might happen if robots developed into living beings.
(S3) T would feel relaxed talking with robots.

(S1) T would feel uneasy if I was given a job where I had to use robots.
(S3) If robots had emotions, I would be able to make friends with them.
(S3) I feel comforted being with robots that have emotions.

(S1)

(S1)

(

S1) The word “robot” means nothing to me.

S1) I would feel nervous operating a robot in front of other people.

© »® N o o s W

10.
11.

13.

(S1)
(52)

12. (S1) I would feel paranoid talking with a robot.
(52)

14. (S2)

Figure 2.3: The NARS questionnaire

2.2.4 CH-33 questionnaire

The CH-33 questionnaire [64] is also used to grasp the impression of the participants regarding
the robots. It uses 33 Likert-scale questions, to evaluate six categories: performance, acceptance,
toughness, harmlessness, humanness and agency. This questionnaire is originally done in Japanese,
but an English version is available [65].

For example, this tool, in addition to the Godspeed one, has been used for example by Hu et
al. to evaluate the perception of the participant towards the robot [65].

2.2.5 Inclusion of Others in Self Scale

The IOS scale evaluates the relationship of the participant with other, in our case a robot, as
mentioned in [55]. It represents the relationship thanks to overlapping circles, with Venn-like
diagrams. This representation is less ambiguous than words that have a more fuzzy meaning.

It can be useful for researchers to evaluate the impact of a robot on a person, especially for
home robots. Indeed, if the person will have to stand alongside the robot every day, it is better
for a good relationship. On another hand, it can be also a good metric to see the evolution of the
relationship; like between humans, we are not close with our friends at first sight but get closer
when we start to better know each other.

2.2.6 Self-Assessment Manikin scale

Based on the experimental evaluation of Ishida S. [51], we can use the following tools to evaluate
the user’s perception of the robot’s action. It is linked to the Pleasure-Arousal-Dominance (PAD)
model (see Figure 2.5a) that represents the emotion thanks to a three-dimensional model:

Pleasure (P) represents the positive or negative emotions caused by a situation;

Arousal (A) represents the degree of activity, psychological and physical arousal;

11
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Please select the picture that best describes the relationship between the person
and the robot:

“@gi “ . ﬁ

Choice A Choice B Choica C  ® Choice D Choice E Choice F Choice G

Figure 2.4: The IOS scale from [55]
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Figure 2.5: The PAD and SAM scale

Dominance (D) represents how dominant you feel about a situation.

The Self-Assessment Manikin (SAM) scale [67] evaluates the PAD thanks to images, see Fig-
ure 2.5b. The drawing helps to avoid some misunderstandings or linguistic issues that words could
bring. Moreover, since the drawings are more intuitive, answering the questions is easier for the
participants, and do not need to be translated.

2.2.7 Big Five personality test

This test [68] uses 5 indicators to evaluate the human personality, it is widely used in psychology
and cognitive science. This 15-question test is used to get the personality of the person, and then to
see if there is a relationship with the emotion recognition found with SAM. The different questions
are indicated in Figure A.1, and the different personality traits below:

Extraversion Extraverts get their energy from interacting with others, while introverts get their
energy from within themselves. Extraversion includes the traits of being energetic, talkative,
and assertive. Questions 1-3 relate to this.

Neuroticism Neuroticism is also sometimes called Emotional Stability. This dimension relates
to one’s emotional stability and degree of negative emotions. People that score high on
neuroticism often experience emotional instability and negative emotions. Traits include
being moody and tense. Questions 4-6 relate to this.

Openness People who like to learn new things and enjoy new experiences usually score high in
openness. Openness includes traits like being insightful and imaginative and having a wide

variety of interests. Questions 7-9 relate to this.

Conscientiousness People that have a high degree of conscientiousness are reliable and prompt.
Traits include being organized, methodic, and thorough. Questions 10-12 relate to this.

12
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Agreeableness These individuals are friendly, cooperative, and compassionate. People with low
agreeableness may be more distant. Traits include being kind, affectionate, and sympathetic.
Questions 13-15 relate to this.

2.2.8 System Usability Scale

One popular way to measure the usability of a system is the SUS developed by Brooke J. [69,
70]. With a 0-100 grade, it evaluated the system’s success, while also providing data about the
trends regarding the interaction flow and primary users’ takeaways, using ten 5-value Likert scale
questions, see Figure A.2. Brooke described its own scale as “quick and dirty”, giving a first glance
of the usability while being simple to use and implement. Even if the authors of [71] mention
limitations of the SUS scale, such as the lack of precision (what is exactly the usability problem),
it is still a pertinent tool to have a first quick glance about the product’s usability.

2.2.9 Demographic Data

Finally, demographic questions are also a common tool in questionnaires. Those personal items
allow the researcher to better know each participant, to categorise them. Indeed, even if every
person is unique, we often react in the same way that person belongs to the same group; and it
can also be useful to discard some bias, hence in chapter 3 we will that all demography-based
hypotheses could not be validated. Common criteria are age, gender, nationality, profession or
any relevant personal question, such as Inowledge about robots.

2.3 Adapting the scales and design of the questionnaire

After grasping all the tools, the questionnaire can be created by assembling them together and then
answering the research question. However, researchers should be careful about the length of that
questionnaire. Thus, Martinez et al. describe in [72] that questionnaires for visitors in museums
and expositions must be breve and simple, otherwise “it is unlikely that visitors will fill out the
questionnaires if they are too long to complete or too difficult to understand, and responses will
not reflect the real experience”. Moreover, many practitioners, textbooks, and research articles
suggest that long questionnaires should be avoided [73, 74, 75] to prevent careless responses and
respondent fatigue as well as to motivate visitors to participate in the survey.

Summary

— It is recommended to not create a questionnaire from scratch, but to reuse
already made questionnaires.

— The first step is to find the research question(s) and the related concept(s).

— Seven tools were described: (i) Likert scale, (ii) Semantic Difference scale,
(iii) Negative Attitude towards Robots Scale (NARS), (iv) IOS scale, (v) SAM
scale, (vi) Big Five test and (vii) SUS. We will choose amongst them to create
the questionnaire for each experiment.

— Researchers should pay attention to the length of the questionnaire.
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Chapter 3

Preliminary Work: Expanding the
Frontiers of Industrial Robots
Beyond Factories

not made to have social interactions. As a preliminary work to experiment more deeply

on the social interactions at home/work, in a familiar environment for the user, here the
robot will be working outside the controlled environment of a laboratory. In addition, participants
will use it without prior training, in order to have spontaneous interactions and reactions.

WITH this first work, we will evaluate how people could perceive an industrial robot that was

3.1 Introduction

Robots with advanced interactive capabilities are promising alternatives toward more efficient and
flexible industrial systems [76]. However, employees’ lack of acceptance and positive attitudes
towards robots have limited the spread of collaborative robots in factories [77, 78]. Moreover,
it is expected that the current academic and commercial interest in the use of these advanced
robots expands its frontiers beyond factories to more ecological and everyday-life scenarios, such as
restaurants, shops, and homes [79]. Unlike traditional efforts in industrial robotics generally focused
on increasing task performance, the next generation of robotics applications enabling interaction
with humans require the consideration of hedonics (i.e., emotions and desires) as well as ergonomics
factors [80, 81, 82]. These novel research activities will enable manufacturers and designers to
build alternatives or counter-measures to increase the acceptability, the social impact, and the
desirability of interactive robots [83, 77]. Many research articles, such as [84, 85, 86] suggest that a
low acceptance and negative attitudes toward robots are in part produced by the mismatch between
people’s expectations (in part due to social media, movies, or inexperience with robots) and the real
capabilities of robots. Robots must be able to work outside laboratories to evaluate more realistic
expectations. However, due to the complexity required to create robust applications with robots,
Human-Robot Interaction (HRI) applications are rarely tested in uncontrolled and public settings.
Moreover, they are often presented and evaluated with convenient samples (e.g., laboratory and
faculty members) [87, 88]. This approach makes data collection more manageable and avoids
many technical issues often presented when robots are required to perform in open, uncertain,
and crowded environments. However, there is a need in the HRI community to move towards
approaches that enable the acquisition of more valuable theoretical and technical insight through
the use and validation of robotic systems in natural, open, everyday environments. This approach
is called in literature as HRI in the wild [87, 88]. Common types of robots used in this emergent
paradigm are social and service robots. Some examples are presented in [27, 28, 89]. In many
cases, these robots are either pre-programmed or remotely controlled rather than fully autonomous.
Some recent examples using this methodology are [90, 91, 92]. In this article, we affronted the
challenge of bringing an industrial robot to the wild through the development of a multi-modal
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and distributed system architecture. This architecture integrates advanced sensors, effective deep
learning methods, and a human-machine graphical interface to enable fully autonomous HRI.

With the aim to first evaluate the interactions of humans with robots, a project has been
developed with an industrial robot made by Kawada Robotics and called NEXTAGE Open [93],
see the Appendix B for the detailed characteristics of the robot. The goal was here to see how
people can interact with a robot not initially made for social interactions.

3.2 Related work

Exposure to robots is basically done in three ways: no HRI (i.e., participants are not asked to
imagine, view, or interact with a robot), indirect HRI (i.e., participants are asked to imagine an
HRI task or observe an interaction with the robot using videos or images) and direct HRI (i.e., the
robot is physically present and interact with participants) [61]. Several cross-cultural studies about
acceptance and attitudes toward robots in different domains have been presented in previous works,
such as [94, 95, 96]. However, in these types of studies, no HRI or indirect HRI is used. While the
study of these non-functional and human-centred aspects through direct interaction is a popular
topic in some social robotics areas, such as Robot-Assisted Therapy (RAT) [97], education [98] and
elderly-care [99], the attention of these aspects when performing advanced Human-Robot Interac-
tion (HRI) activities using industrial and collaborative robots is still limited [100]. A recent review
of research articles evaluating attitudes, anxiety, acceptance, and trust in social robotics domains
is presented in [61]. They discovered that “studies providing direct HRI may report different atti-
tudes to studies where participants do not directly interact with a robot". Moreover, attitudes can
change depending on the application domain and the design of the robot (e.g., humanoid-like or
anthropomorphic). In the context of industrial robotics, studies collecting attitudes, expectations
or perceptions towards robots after a direct HRI interaction are still rare. For example, Aalto-
nen et al. [101] grasped possible expectations of factory workers from the industrial and academic
points of view. However, data collection was performed with an online questionnaire with no direct
HRI. Moreover, experimental research with industrial and collaborative robots has been mainly
limited to lab experiments with convenience samples (e.g. students or people working in a research
lab) [102]. Laboratory studies are still mainstream in HRI. However, validations of robotics sys-
tems in the wild will increase more and more in relevance as increases the need to have advanced
robotic systems able to be used outside factories and laboratories.

Museums and exhibitions are suitable in the wild scenarios for exposing novel technological
achievements to people with different backgrounds and interests [103]. An example is proposed
in [104], where an ethnographic study is performed in a museum with a humanoid robot. Other
examples of HRI demonstrations in the wild scenarios using FROG (a tour guide robot) are pre-
sented in [105, 106]. Other suitable locations for in the wild experiment are shopping malls, such
as the work done by Kand et al. [107]. They used a robot (Robovie-IIF) to help customers to
find their way in the mall. The robot was partially teleoperated, to overcome speech recognition
of algorithm difficulties, and to keep the interaction smooth. We can also mention some of our
previous work with robot interaction in school [27, 28]. In those studies, the Pepper robot was used
to entertain children in their school with some activities, in uncontrolled scenarios. In the current
article, we affront the technical challenge of designing and executing an HRI application with a
dual-arm industrial robot in a public and crowded scenario, specifically a robotic exhibition.

Table 3.1 summarises recent and similar works reporting the development of robotic systems
with industrial robots able to share the same space with people and that collect the users’ percep-
tions towards robots after performing direct HRI. This table shows that one of this article’s main
novelties/differences against previous works is the experimental setting, which is not performed in
a closed room or laboratory. Instead, validation of our proposed system is performed in a public
and noisy scenario with no control of environmental conditions (e.g., illuminations or the number
of people in the field of view of the robot). Similar to [100], our proposed system is integrated
into a dual-arm industrial robot. Unlike [100], where the robot is remotely controlled, the robotic
system proposed in this article is fully autonomous. Moreover, many systems developed in previous
and similar works were developed to follow an industrial task, which in most cases requires some
previous training. An exception is [108] where a straightforward but suitable task is proposed for

15



Chapter 3 — Preliminary Work

Article Robotic plat- | Setting Task Autonomy Training re- | Participants
form quired
Miiller- Universal Robot | Laboratory Assembly task Fully au- | Yes 90 subjects
Abdelrazeq 5 robot arm tonomous mainly students
et al. (2019) [77] from a technical
university
Rossato Universal Robot | Laboratory Collaborative Fully au- | Yes 20 industrial
et al. (2021) [109] | 10e robot arm task tonomous senior and
younger workers
Drolshagen KUKA LBR | Closed room The robot pick | Fully au- | No 10 participants
et al. (2021) [108] | iiwa 7 R800 up wooden | tonomous with mental or
(robot arm) sticks to hand physical disabil-
them over to ities.
the worker
Baxter dual-arm | Closed room Participants Remote con- | Yes 11 car
et al. (2017) [100] | robot instructs the | trolled employees
robot to put
blocks inside
boxes
This work NEXTAGE Public space The robot gives | Fully au- | No Hundreds,
Open dual-arm gifts to visitors | tonomous only 207
robot according to swered
their instruc- questionnaires.
tions and facial
expression

Table 3.1: Research articles proposing interactive robotic systems with industrial robots for grasping
perceptions towards robots after performing direct Human-Robot Interaction

enabling people with mental and physical disabilities to interact with an industrial robot. These
complex industrial tasks, such as assembly, are inappropriate for a robotic exhibition where people
interact with the robot voluntarily and have no time for complex explanations. Therefore, we de-
signed an intuitive socio-emotional scenario where the robot can guide and adapt to human actions
and emotions.

3.3 Objectives and contributions

This article proposes a novel application where a dual-arm industrial robot, originally designed
to be used by industrial workers, can interact with people from different backgrounds and out-
side laboratories and factories. The main objective of the project presented in this article is to
develop an intuitive, social, and engaging interactive scenario for the International Robot EXhibi-
tion (IREX) using the NEXTAGE Open robot by KAWADA ROBOTICS CORPORATION [93].
Rather than proposing a typical scenario where robots require to be isolated from visitors or a
cooperative industrial task (which often requires previous training), we developed an application
where humans intuitively interact with an industrial robot through emotions and body motions.
In this way, visitors can experience what is to interact with an advanced robot with advanced
grasping, perceptual, and cognitive capabilities in an everyday-like situation. Therefore, the main
contributions of this work are (i) the creation of an intuitive and engaging HRI scenario that in-
tegrates the NEXTAGE Open dual-arm industrial robot; (ii) the execution and validation of the
proposed HRI scenario in an unconstrained, crowded, and dynamic environment; and (iii) valida-
tion of the proposed scenario using self-reports that grasp the emotional experience towards the
robot platform and the proposed HRI scenario of participants as well as their potential needs and
attitudes towards industrial robots with social capabilities.

Moreover, this system is validated with more types of users, rather than only factory workers
or faculty members (e.g., students).
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Figure 3.1: Robot on the booth

3.4 Design and Implementation

3.4.1 Hardware

The experimental setup is composed of four parts. The main one is the NEXTAGE Open robot
from Kawada Robotics [93]. It is an upper-body anthropomorphic robot with 15 DoFs, 6 for each
arm, 2 in the neck and 1 for the waist. The robot also has 4 cameras, 2 in the head and 1 in each
hand. The hand are composed of a three-fingered pneumatic gripper, and the payload for each is
1.5 kg. The robot is controlled by an Intel NUC PC on Ubuntu 16.

The second part is composed of three sensors used to detect the user’s interactions with the
robots. The people detection is achieved with two devices (redundancy for robustness): a
RealSense depth camera (RS), and a set of ultrasonic sensors (US). The latter is a custom made
array of six HC-SR0/ sensors, see Figure 3.1. Both are used to estimate the proximity of the user
to start and sustain the interaction and are placed below the robot on the front panel. Only the
sensitive part is visible, thanks to two slits. The user’s choice detection is done with a Leap
motion placed on the booth’s edge, in front of the object’s window. It detects the choice between
three positions: left (chocolate), centre (pen) and right (eraser). A mark was placed on the floor
to indicate the user’s ideal position which maximizes detection.

The cameras are used for two purposes. The embedded eye camera (EC) detects the person’s
facial expression and the engagement of the user. According to those, the robot will change its
behaviour, by knowing, for example, if the user is engaged in the interaction. The hand cameras
(HC) are used to detect the position of the objects on the table, and to grasp them.

The third part is placed behind the robot: a monitor was installed on a wall to display the
Graphic User Interface (GUI). It indicates to the user what to do, see Figure 3.2. The instruc-
tions are written in English and Japanese; visual feedback from the cameras (user’s face with his
engagement and the recognition of the objects from the HCs) is also displayed.

The last part consists of the computers. Besides the computer used to control the robot, two
computers composed the apparatus. They run the algorithms that are divided on both to maximise
robustness, see section 3.4.2.

3.4.2 Software

The software architecture is described in Figure 3.3. The first PC (Desktop: RAM 32 GB, CPU
Ryzen 1900X 8 cores 3.8 GHz, GPU Nvidia GeForce RTX 2070) is dedicated to vision, with three
resource-consuming algorithms. The second PC (laptop Dell Inspiron 14 5000: RAM 8 GB, CPU
i7-7500 2.70 GHz) runs the sensors scripts. Data are gathered on two blackboard scripts (i.e.,
shared working memories) and sent to the control PC and the GUI using NEP [110], on a WLAN.
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Figure 3.2: Main elements of the designed Graphical User Interface (GUI)
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Figure 3.3: General architecture of the project. The GUI program is using client-server architecture, the
server is in Python and the client in JavaScript
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Figure 3.4: Example of markers used by the staff

a) Eye camera algorithms

The first algorithm detects the gaze direction and head orientation (and then determines the
engagement) of the user regarding the robot. If s/he is not looking it in the eye, it will continue
its task until the user is engaged in the interaction. We are using an algorithm we developed,
described in [111].

The second one recognises five different emotions of the user, if s/he is happy, sad, sur-
prised, angry or neutral. The emotions are used to determine if the robot will give or not the gift.
If the emotion of the user is negative (e.g. angry) the robot will take the gift back and let the user
choose another one. We assume the user changed their mind and would prefer another gift.

The last algorithm using the video stream from the EC is to detect the markers. The
marker is a QR-code-like image (see Figure 3.4) printed on the badge of the staff members to
activate particular functionalities of the robot. For instance, the robot will give the object directly
in the user’s hand by tracking it. It was not available to the general public for safety reasons, and
the gift was dropped off on a tray in front of the user.

b) Hand cameras algorithms

Two identical algorithms run simultaneously to process the video stream of each hand. This
algorithm performs object recognition by feature extraction and classification. Different customized
models were created corresponding to the objects the robot has to manipulate. The Faster RCNN
was applied, with these models taking advantage of its high capacity to detect different objects
with enough precision.

The algorithm was trained to detect the three objects the robot has to grasp: a pen, a chocolate
and an eraser (with a smiley shape), Figure 3.5. The model was trained with about 300 images;
with one or several objects, fully displayed or partially covered or with different luminosity and
background.

The algorithm’s output is the object’s name, the bounding box (BB), and the confidence score
(the probability of being a true positive). Only the objects detected with a confidence score over
75% are used, and the bounding box coordinates are sent to the control algorithm. Moreover, for
the chocolate and the eraser, their BB is expected to be square, so the shape of the BB is checked.
If it is a rectangle and not a square, it means the object is partially in the field of vision. Hence,
the centre of the BB is not the centre of the object, and to avoid grasping problems, the object is
discarded until it becomes fully visible.

c) Sensors algorithms

The algorithm is separated into two parts. The first one is on an Arduino where the six ultrasonic
sensors (US) are connected. The script loops on them to get the current distance data and send
it wia serial communication to the sensor PC. A second algorithm grasps the data from the six
sensors and sends them by NEP to the blackboard sensor script that gathers all the sensor data
before sending them to the control algorithm.
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Figure 3.5: Real scene with the objects the robot has to detect and grasp

d) Control algorithm

The algorithm is detailed in Figure 3.7. Four threads are running in the background to gather
the data sent via NEP. Moreover, the algorithm is using a virtual grid to track the objects on the
plates. The quantity and position of each object on that grid are recorded. The cameras are used
to know the precise position of the different objects and facilitate the grasping task.

The Working task is used when no one interacts with the robot. In this case, the robot is
moving objects on the grid randomly. When a user is detected, the robot stops this task and turns
its head to the user. If it has an object in its hand, it proposes it to the user and gives it to
him /her, if the facial expression and engagement are positive.

The robot then Presents the objects with a hand gesture (and on the TV screen as well)
and waits for the user to point at the object of their choice, the pointing is detected by the Leap
Motion sensor. The robot picks the selected object and offers it to the user. While doing that, the
user’s facial expression and engagement are checked, and according to them, the robot will give
the object or pick a new one (see section a)).

The Refill task is done when the robot has nothing to do with the user (i.e. during the
Working task) if the plates are almost empty. If they are empty, the task is done even if a user
is present. To refill, the robot turns 90° to access a big plate with different objects. This plate
is easily accessible by the staff even during the running of the robot, with safety. Because the
objects are placed randomly on that plate, the robot relies only on the hand cameras with the
object detection algorithm to pick the correct object.

For simplification, two details are not in the graph. The first one is the detection of the QR
Marker, which is done when the user approaches. Thus, the Give object action will be different,
as described in subsection a). The second one is the Invite next user action, which is done after
two interactions of the same user. Indeed, we limited users to 2 consecutive interactions to avoid
monopolisation.

e) Human-Robot Graphical User Interface

We designed a Graphical User Interface (GUI) able to: a) provide feedback to people interacting
with the robot about the decisions and actions taken by the robot (e.g., the current facial expression
of the user that has been detected, and selected gift), b) give instructions to users about how to
proceed in the interaction, and c¢) enable developers to monitor the status of sensors and the
results from deep learning algorithms. This GUI was developed using modern web technologies
and JavaScript libraries, such as Node.js, HTML, CSS, and Vue.js. The interface subscribes to the
blackboard sensor and blackboard vision modules and the decision-making modules using NEP.
The information obtained from these external modules is used to change dynamically the elements
displayed to the users. Figure 3.2 presents the basic sections of this interface. Figure 3.6 shows
examples of the different elements changed according to the robot and sensors’ status. When there
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Figure 3.6: Examples of elements shown in the GUI according to the status of the interaction: a) No
human interaction is performed, b) the interface shows which object is selected by the human, ¢) the robot
provides information about what is doing and how it feels
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Figure 3.7: Flowchart of the command of the robot. The green boxes are threads running in the
background and updating data. The actions with a red mark are calling the Updating plate state one. The
Cognitive engagement thread estimates the engagement of the user towards the robot thanks to the user’s
position, emotion or gaze.

Waiting

Invite next
user

Give object
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is no interaction between the robot and a user, the background colour of the interface is green;
otherwise, it is blue.

3.5 Validation in the wild

The experimentation took place at the International Robotics Exhibition (IREX) 2019, in Tokyo,
Japan. It is a public event for four days at the end of December, before the COVID-19 pandemic.
As presented in section 3.3, the main objective of this work was to build a system architecture
that integrates state-of-the-art perceptual tools to provide engaging experiences for visitors of
IREX 2019. In order to know if this objective was met and to identify possible improvements for
posterior iterations, we formulated the research question Q1 (see below). Additionally to the main
goal of this article, we also grasped the attitudes and expectations of visitors of IREX after a direct
interaction with an industrial robot with affective and cognitive skills. Therefore, we formulated
the next two additional research questions Q2 and Q3.

Q1: What are the emotional reactions and perceptions of visitors towards the proposed
interactive scenario?

Q2: What is the attitude of visitors towards robots after direct interactions with an
industrial robot with affective and cognitive skills?

Q3: What are the potential expectations of visitors towards robots in their working
and everyday environment?

3.5.1 Subjective validation of the proposed system

We use the semantic difference (SD) (q.v. section 2.2.1) self-reporting questionnaires to grasp
participants’ emotional reactions to the robot and the proposed HRI. The results from these ques-
tionnaires are used to answer the research question Q1. We collected 30 possible pairs from
state-of-art works on industrial and social robotics. Finally, 18 pairs were selected to be applied in
different 5-point Kansei (K) questionnaires. We classified these pairs of words into two sections:
K-1 and K-2, they are presented in Tables 3.3 and 3.4 respectively. While K-1 was designed to
grasp the feeling of visitors about the HRI scenario (using 6 pairs), K-2 was designed to grasp
the impressions about robot design, usefulness, and skills (using 13 pairs). Additionally, two open
questions, identified as OP-1 and OP-2, were applied to answer question Q3. These two questions
were defined as follows:

OP-1: If you had to work together with a robot, what would be the main characteristics you think
the robot should have?

OP-2: If you had to live with a robot, what would be the main characteristics you think the robot
should have?

We use the NARS scale (refer to section 2.2.2) to grasp the attitudes of participants after a
direct interaction with the robot and in this way answer question Q2. We use the original version
of NARS defined in [60], which is in the Japanese language and its version in English. In total
NARS-S1, NARS-S2, and NARS-S3, and the proposed questions of K-1, K-2, OP-1, and OP-2 are
composed of 35 questions.

It is relevant to highlight that the research methodologies and objectives of this article are
different from most classical HRI research activities performed in laboratories or structured en-
vironments, where participants are hired or are members of the same laboratory or school. This
type of participant has time and motivation to effectively answer large questionnaires built with
five or more items for the same psychological or usability construct. This traditional approach
is often applied to prove the validity and reliability of the results using tools such as Cronbach’s
alpha [112]. In the application presented in this article, qualitative data is obtained from visitors
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Figure 3.8: The content of each questionnaire P1-P4. The number in the red circle indicates the number
of questions.

of a robotic exhibition that participated voluntarily. Therefore, many typical considerations for in-
creased validity, sensitivity, and reliability done in structured, descriptive, or explanatory research
performed in laboratories are not suitable and are out of this project’s scope. In this context, a
common topic of discussion in the literature is when to use single or multi-items for the same con-
struct in self-reporting questionnaires. For example, [113] discusses how the use of multiple-item
measures is costly, aggravates respondent behaviour, and increases response errors. Moreover, even
“a second or third item of the same construct contributes little to the information obtained from
the first item". Diamantopoulos et al. in [114] suggest that single-item approaches are viable op-
tions in exploratory research. This type of research is usually performed at a preliminary stage, in
unstructured settings, such as in this work. Recent works discussing the suitability of single-item
or multi-item constructs are [115, 116]. In practice, single-item approaches can be considered suit-
able for well-understood constructs, such as those measuring satisfaction. Moreover, multi-item
approaches are more suitable for complex constructs, such as trust and attitudes [117, 114]. In this
work, we use a single-item approach for measuring satisfaction-related constructs and a multi-item
approach (NARS) to measure attitudes. Moreover, as described in section 2.3 about the length
of the questionnaires, we divide the proposed 35 questions among four questionnaires (P1, P2,
P3, and P4) that were applied on different days in the IREX exposition. NARS-S1 questions are
asked in P1. NARS-S2 and NARS-S3 questions are asked in P2. K-1 (6 items), OP-1, and OP-2
questions are asked in P3. Finally, K-2 (13 items) questions are asked in P4. The first part of
the questionnaire P4 (composed of 6 items) was used to grasp impressions of perceived intelli-
gence and animacy towards the proposed robotics system. The second part of the questionnaire
P4 (composed of 7 items) was used to grasp design-related aspects of the robot platform. Four
demographic questions (age range, gender, country, robotics experience) are included in P1, P2,
P3, and P4. We provided two versions of each questionnaire, one in Japanese and the other in
English, participants were free to choose the language that suited them the most. Figure 3.8 sums
up the content of each questionnaire.

3.5.2 Participants

Participants of this study are visitors of IREX 2019 that voluntarily interacted with the proposed
HRI system. After they interacted with the robot, we asked them if they could fill out one of
the questionnaires described before and by doing so give consent to use their answers for research
purposes. No personal data were collected. The total number of participants answering is 207.
From the questionnaires P1 and P2, participants (5 and 2 respectively) were discarded because
they did not answer all of the questions. We discarded participants only in P1 and P2 because the
NARS score is built from the answer to every question. Contrastingly, the answers to the questions
of P3 and P4 can be taken individually, then, empty answers are not discarded. Table 3.2 sums
up the demographic data of each questionnaire. Because IREX is held in Tokyo, Japan, most of
the participants are Japanese (between 70% and 86% depending on the questionnaires). We also
divided the participants into groups according to their knowledge of robotics: novice (1/5 and 2/5
on the Likert scale), and people that are knowledgeable about robots, called expert (3/5, 4/5 and

5/5).
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Table 3.2: Demographic data of each questionnaire. Some participant did not mention their gender or
country. For the latter, we assume they were Japanese or not depending on the version of the questionnaire

they used (Japanese or English).

P1 P2 P3 P4

Considered answers 78 100% 67 100% 47 100% 44 100%
Japanese 57  73% 47 0% 40 8% 38  86%
Non Japanese 22 28% 20 30% 7 1% 6 14%
Male 62 79% 55 82% 26 55% 27 61%
Female 15 19% 12 18% 21 45% 17 39%
Novice 21 27% 22 33% 25 53% 23 52%
Expert 57 3% 45  67% 22 4% 20 46%
OP-1 18 38%

OP-2 21 45%

Figure 3.9: The robot was in front of an alley with a lot of traffic, this was challenging for the algorithms
that were developed in a controlled environment.
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3.6 Results

3.6.1 User perceptions and emotional reactions

We use the results from questionnaires P3 and P4 to evaluate the answer to Q1 (What are the
emotional reactions and perceptions of visitors towards the proposed interactive scenario?). Results
from emotional reactions (P3) are shown in Table 3.3. Table 3.4 contains the result from the P4
questionnaire, regarding the feeling of the participants regarding the robot. We can gather some
dimensions into similar concepts (C), regarding the satisfaction («) and comfort (8) of the
participants after interaction with the robot (K-1); and behaviour (), interactions (4) and
appearance (¢) for their impressions (K-2).

3.6.2 Negative Attitudes Towards Robots

We use the results from questionnaires P1 and P2 to answer research question Q2 (What is the
attitude of visitors towards robots after direct interactions with an industrial robot with affective
and cognitive skills?). The mean value and standard deviation (SD) for NARS-S1, NARS-S2
and NARS-S3 are summarised in Table 3.5. The mean values of each NARS section can be
interpreted as positive (values close to 1), neutral (values close to 3), and negative (values close
to 5). We divided the participants into male—female, novice—expert and Japanese—non-Japanese
groups. Table 3.6 shows the mean and standard deviation values for each of these groups.

3.6.3 User needs and desires

We use the open OP-1, and OP-2 to grasp the potential needs and design desires of users towards
robots. Relevant words used by participants to describe needs and desired features of robots
in working environments are: kindness, safety, intuitive, responsive, cuteness, convenient, fast,
accurate and efficient. On the other hand, participants consider that robot in their every-life
environment must be fun, kind, safe and cute. Moreover, they consider that robots must be
able to have effective and interesting communication skills, understand feelings and emotions, use
clothes, and have convenient and interesting functionalities such as being able to cook and dance.

3.6.4 Hypothesis

With the collected data and the different groups created, we can draw some hypotheses. They will
lead, in addition to the research question the analysis of the results.

H1: The cultural background (country of origin) has an influence on their perception
of the robot.

H2: The gender of the participants has an influence on their perception of the robot.

H3: The knowledge about the robots has an influence on their perception of the robot.

Regarding the cultural background (H1), Jiang and Cheng pointed out better acceptance of
robots by Chinese people [118]; and Brohl et al. mentioned that Japanese people are more used to
seeing robots in everyday life than Chinese or US people [119].

Concerning the knowledge about robots (H3), we can hypothesise that ezpert people have a
more rational preconception about robots, on their real capability and not based on a fictional
image of robots [120].
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Table 3.3: Semantic analysis results (K-1), about the feelings the participant had regarding the robot. The concepts (C) are regarding to the satisfaction (a) and

comfort (3).

C Dimension Semantic Evaluation (u%)

Positive (1)  Negative (5) Japanese Non-J. D Male Female D Novice  Expert D Total
a Happy Unhappy 1.4306% 114938 0136 1.4607T 1.29956  0.346 1.24°60 155067 (.109 || 1.380:64
a  Interested Boring 12805 1.14938 0447 1.2705%  1.2495%  0.844 1.249°%2 1.279%5 (.836 || 1.26°-52
a Disappointed Amused 4.60°63 5,009 0.000 4.54°6°> 4.81%°1 0.116 0.72061 4.59959  0.467 || 4.66%-%°
B Relaxed Anxious 2.10%22  1.86'46 0.690 1.88999 229149 (297 22843 1.8209 (.196 || 2.06!23
B Safe Danger 1.250-54  1.71159 0447 1.23951  1.43998 0409 1.2898% 1.36%°% (.702 || 1.3207®
B Confused Clear 42001 371170 0491  4.23"18  4.00'3° 0.532 4.20%2° 4.05"17 0.669 || 4.13'2!

Table 3.4: Semantic analysis results (K-2). The concepts (C) are regarding to the behaviour (v), interactions (§) and appearance (¢).

C Dimension Semantic Evaluation (u%)

Positive (1) Negative (5) Japanese Non-J. D Male Female D Novice Expert D Total
v Smart Stupid 1.61972  1.33952 0290 1.449%% 1.76"%3  0.176 1.57°%6 1.5797 0.977 || 1.570-%7
o Simple Complicated ~ 3.58:0° 317172 0590 3.67"11 3.29%10 (0284 3.61%12 3.43L12 (.597 | 3.52110
v  Dynamic Static 3.531:20 290110 0,050 3.26%10 3.56'50 (0.488 3.36'33 3.38120 (0964 || 3.371%4
v  Responsive Slow 3.00%%  250%%  0.16 2.9626 288L05 0.820 3.04%2¢ 281108 (0.511 || 2.93%16
) Lifelike Artificial 2.89129 2 17L17T  0.205 2.48%19 329131 0,046 2.5727 3.05'2% 0.218 || 2.80"%7
5 Emotional Emotionless  3.05%'' 2.83833% 0714 29311 31819 0.489 3.04%'° 3.00"'* 0.900 || 3.02!12
5 Useful Useless 1.891.01 15098 0.330 1.81°9% 1.88L9° 0.832 1.65°% 2.05107 0.192 || 1.84°98
§  Familiar Unknown 3.391:35 250984 0,053 3.11%4° 3.531.07  0.278 3.26'39 3.291-27 (.951 || 3.27%30
e  Desirable  Undesirable  1.84%%°  1.20°% 0.029 1.63%%* 2.00°% 0.189 1.78'9%* 1.75064 (.901 || 1.770-86
£ Cute Ugly 195109 1.33952  0.043 1.8199 1.94120 0.716 1.87°°97 1.86%'® 0.969 | 1.86':04
€ Modern Old 1.570-83 133052 0374 1.35069 1.8208% 0070 1.6107® 1.4598% 0523 || 1.5307°
e Attractive  Unattractive  1.79%04 133952  (0.116 1.67199 1.82101 0619 1.741.00 171101 (.935 || 1.730-99
€ Like Dislike 1.68987  1.00%%° 0.000 1.44%75 1.8209 0175 1.65%7% 1.52098 (.623 || 1.59°-33

NIoA\ Areurwrppld — ¢ 10idey)
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Table 3.5: Average (u) and standard deviation (o) values for each NARS type. Values close to one
represent positive attitudes and values close to five represent negative attitudes. Because the NARS-S3 is
using positive questions, it is the five’s complement of the mean that is shown.

Type i o
Interaction (S1) 1.90 0.72
Social (S2) 2.60 0.96

Emotion (S3)  2.62 0.97

Table 3.6: Average (1) and standard deviation (o) of the NARS questionnaire according to each different
group. The column p represents the p-value of Welch’s t-test. Because the NARS-S3 is using positive
questions, it is the five’s complement of the mean that is shown.

Interaction (S1) Social (S2) Emotion (S3)
Groups 1 o P m p 7 7 - »
Non Japauese 187 092 5% 500 oss 00 yap g 0130
Fomde 188 078 %% 555 gas %0 51 s 093
Boet 18 om 0188 55y Ty 0481 pgy ypg 052

3.7 Discussion

3.7.1 Regarding Q1 and Q2

In Table 3.3, the visitors expressed to have a highly positive experience by feeling happy (¢ =
1.38;0 = 0.64), relaxed (1 = 2.06; 0 = 1.23), and interested (u = 1.26; 0 = 052) in the proposed
HRI scenario. Moreover, rather than considering interaction with the NEXTAGE Open industrial
robot a dangerous task, visitors mostly expressed feeling safe (u = 1.32;0 = 0.75). They also
considered the proposed HRI scenario as clear (fi = 0.87;0 = 1.21') or intuitive enough, with a
value really close to 1, which was the main objectives of this project. We can sum up the feeling of
the participants and reply to Q1 by analysing the different concepts, thus they were satisfied|[a]
(scores around 1.3) and felt comfortable[S] (scores between 1.3 and 2) after their interaction with
the robot.

Results shown in Table 3.4 suggest that visitors perceived the robot as a smart (u = 1.67;0 =
0.67) and complex machine (u = 3.52;0 = 1.10), which is between a lifelike and an artificial
entity (4 = 2.80;0 = 1.27). Even though the robot was able to recognise emotions as well as
make decisions regarding them, or the engagement, visitors had a neutral impression between
emotional - emotionless (¢ = 3.02;0 = 1.12). One factor influencing this result may be the
lack of whole-body expressive movements presented in the proposed application, which could be
one possible improvement in the system to have a better response from the participants [19]. This
lack of emotion could also be an explanation for the perception of the robot’s movement by the
participants. They considered them neither responsive nor slow as well as mostly static rather
than dynamic, with a score of around 3 for both of them. It is confirmed by the analysis of
their impressions regarding the behaviour[y] and interactions[d] of the robot; participants have
difficulties interpreting them, and grade them neutrally with scores of around 3, aside from the
intelligence and usefulness that are judged positively.

From Table 3.3, we can see that the perception of the robot is positive, the visitors see it as
cute (1 = 1.86;0 = 1.04), desirable (u = 1.77;0 = 0.86) or attractive (u = 1.73;0 = 0.99).
During the experiment, the robot was dressed in a hat and an apron, which could also explain
the positive reaction of the public. However, they were quite neutral regarding their familiarity
(u=3.27;0 = 1.30) with NEXTAGE, even if it is not famous to the general public, its design is still

n order to keep coherence, the values in the text are presented to have the value close to 1 for the described
adjective. When an adjective is close to the 5-side, then the five’s complement (6 — p) is used, and symbolised by
a bar: fi.
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close to what a person could expect to be a robot, and the participants judged its apperancele]
positively (scores around 1.7).

Nevertheless, the analysis of the different subgroups can not allow us to answer the three
hypotheses (H1-3). Indeed almost all the p-values of Welch’s t-test do not permit to discard of
the null hypothesis. This is clearer with the novice-expert group, where most of the p-values are
close to 1. We can still point out some significant differences, with p < 0.05. We can observe some
differences in the perception of the robot, especially regarding the country of origin. Thus, the
Japanese participants described the presented robot as less dynamic (u = 3.53;0 = 1.20) than
the foreign participants (u = 2.20;0 = 1.10). One explanation could be the habituation of robots
in everyday life in Japan. Those robots, such as Pepper, try to be dynamic to catch the audience’s
attention. Yet, NEXTAGE is originally an industrial robot and then has more rigid movements.
We can see with our results that foreigners (u = 2.50;0 = 0.84) seem more familiar with that
kind of robot that Japanese participants (u = 3.39;0 = 1.35). However, both groups found the
robot cute and liked it in a similar proportion. On the other hand, men tend to see more life
(1 =2.48;0 = 1.19) in the robot than women (p = 3.29;0 = 1.31).

To answer the second research question (Q2), we can also use the NARS analysis of P1 and P2.
As shown in Table 3.5, participants have a positive attitude towards interacting with industrial
robots, a neutral and slightly positive attitude towards the social influence of robots, as well as
a neutral attitude toward emotions in interaction with robots. Results from the Welch’s t-test
shown in Table 3.6 suggest that there is not a statistically significant effect between genders (p-
value higher than 0.05), dismissing again H2. This result differs from those reported in [77],
which suggested that women have more negative attitudes towards robots than men. However,
our results agree with those recently reported in [78], which performed a systematic mapping of
research articles exploring attitudes, trust, and acceptance in different contexts of social robotics.
They found out that “the gender of the participants [is| not associated with their affective attitudes
toward social robots”. Similarly, the t-test applied to novice and expert groups indicates there are
no statistically significant effects regarding robotic-related experiences (H3). A hypothesis could
be that experts in robotics can be people working in marketing for robotic companies, or workers
in factories where robots and humans work isolated. Therefore, it may also be the first time they
actually share the same space with an industrial robot in an interactive scenario for most of them.
This can explain why results from people with more experience in robotics presented similar values
to those identified as novices (in many cases families and tourists). On the other hand, the novice
group, even though they know less about robots, can still be interested in them, and that is why
they visited IREX. The analysis of the countries is also non-significant and does not allow us to
verify H1. Even if [119] pointed out some differences in the perceptions of robots by countries.
Even if some analysis using NARS already pointed out that the country of origin has an influence
regarding robot [121].

As explained in section 3.2, studies reporting results of attitudes, acceptance and trust towards
robots change depending on the application domain, the type of exposure, and the design of the
robot. Romeo and Lado found positive perceptions about robots during the pandemic in Spain for
Generation Z (1997-2012) [122]. However, those results could be just a confirmation of the general
tendency, regarding the acceptance of robots in Spain or by the young generation. Therefore,
robotics systems such as those that we presented in this article shall become more relevant in the
near future. This study mainly showed positive attitudes and impressions of visitors towards the
use of robots. This suggests that the main objective of the project presented in this work was met,
proving that people with no experience could interact with a robot without prior teaching, in an
enjoyable scenario. However, these impressions can be biased by the fact that humans received a
gift. How this factor and other complex factors (such as the cultural background) may or not result
in positive attitudes, acceptance or trust and how they affect the robot’s perception of different
attributes such as its behaviour or appearance is out of the scope of this article and can be discussed
in future iterations/studies of the proposed cognitive system.

3.7.2 Regarding Q3

Concerning the third research question (Q3, What are the potential expectations of visitors towards
robots in their working and everyday environment?), the words and desired features used for
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replying to the OP-1 and OP-2 suggest that providing robots with pleasing design/aesthetics,
intuitive communication skills, and enjoyable HRI activities can be relevant aspects to improving
the user experience and desirability of robots in both working and every-life settings. This contrasts
with the traditional utilitarian objectives of robotics, which focus on performance (i.e, efficiency
and effectiveness) and, this agrees with recent studies in HCI and HRI showing the importance
of hedonic factors (e.g., aesthetics, pleasure, and emotions) for the successful integration of novel
technological [123, 124, 125, 56]. The identification of the needs and desires of possible users of
robots is a relevant task for developing robots and applications with greater acceptance, social
impact, and market penetration [126, 127].

The participants also focus a lot on safety, especially in work settings, 39% of answers to OP-1
mention it. For instance, one participant mentioned that “a human should be able to turn it off”.
This comment can be influenced by science fiction books or films. Liang and Lee pointed out that
people with exposure to that kind of media have higher fear of robots and AI [120]. They also
identified that only 30% of the US population has no fear of robots and Als, and actually most of
them make no difference between fear of robots and Als. This fear of robots/Als can explain the
sake of safety, it was one of the conditions of their acceptance in factories from the 60s [128].

Even if we mention before that participants are not solely looking for efficiency, it is still a
recurrent comment, especially in the case of working with robots. The robots are essential for the
so-called Industry 5.0 to improve the efficiency of the process [129]. The people are expecting them
to do their task “fastly” and “accurately”.

3.7.3 Limitations

Because of the nature of the experiment, without any selection of participants, we have some
bias in the population. Then, besides the questionnaire P4, all of the others have an unbalanced
distribution, with around 80% of males for P1 and P2, and around 60% for P3. Even if the ‘I’
of IREX stands for international, the number of non-Japanese is below 30%. Due to the lack of
foreign people, we gather all the non-Japanese together, even if some disparities exist, even between
close countries, such as France and Germany [121]. Being a heterogeneous group could explain the
difficulty to interpret the results.

The difference in the size of the different subgroups can be an explanation for the non-statistical
difference in the results, and why we cannot clearly answer the hypothesis. Since it was not the
main goal of our experiment, it is not a problem, but can be taken into account for future works.

3.8 Conclusion and Future Work

Industrial robots are advanced machines able to generate engaging HRI scenarios that are difficult
to reach with most social robots, such as those tasks requiring advanced manipulation of objects.
However, most of them are evaluated and used in factories or research laboratories. In this work,
we proposed the initial iteration of an advanced industrial robotic system able to deal with a noisy,
crowded, and public environment (an international robotic exhibition). We successfully affronted
the challenge of bringing this robot to the wild and made a step ahead toward developing systems
helping in the understanding of those social and technical factors influencing the adoption of robots
in everyday environments. The proposed system could perform during the whole event (four
days) without any technical issues and could manage the interactions with hundreds of visitors.
The system can recognise human faces, states, actions, and emotions from the user. Then, in
an unscripted scenario, the robot could adapt its behaviours according to the user’s ones. We
demonstrated by using an industrial robot in this explorative study that they could be used with
the general public, in the wild, without prior specific training. With the addition of the results from
applied questionnaires that suggest that visitors considered our proposed scenario enjoyable, safe,
and interesting, it suggests that the proposed work’s main objective was met. Results collecting
expectations of this preliminary study also coincide with previous studies showing the importance
of non-functional elements, such as aesthetics, in HRI and HCI. Future studies will be focused on
exploring how non-functional features, emotional expression, and different robot personalities, as
well as the different errors presented in the interaction, can influence or result in an improvement
in the attitudes, positive experiences, trust, and acceptance toward robots in everyday and public
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scenarios. In addition to checking with a wider population about the impact of gender, knowledge
about robots and country of origin. Concerning the latter, it could be better to have a group for
each nationality.

Summary

— We experimented with the industrial robot NEXTAGE OPEN in an uncon-
trolled environment (in the wild).

— The participants could interact with it to obtain the gift of their choice.

— The robot was using social cues (gaze or facial expression) to estimate the
. engagement of the user in the interaction.

— The participants enjoyed our scenario and felt comfortable and satisfied.

— Achievement: Siméon Capy, Liz Rincon, Enrique Coronado, Shohei Hagane,
Seiji Yamaguchi, Victor Leve, Yuichiro Kawasumi, Yasutoshi Kudou, and Gen-
tiane Venture. Expanding the frontiers of industrial robots beyond factories:
Design and in the wild validation. Machines, 10(12), 2022. ISSN 2075-1702.
doi: 10.3390 /machines10121179. URL https://www.mdpi.com/2075-1702/
10/12/1179 [1].
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Design of a Non-Verbal Behaviour
Robot: Yokobo

on the general public. However, this robot has an anthropomorphic shape that implies

expectations from the users, notably in the interaction; they can also feel uncomfortable.
In addition, even if the robot ran for a long time, the interaction with each participant was short.
In this second project, we will aim to push further the study of HRI by seeing the effect of a long
time of interaction with an abstract-shaped robot; by keeping non-verbal behaviours only. For this
study, we will build a robot from scratch, which is also an important component in the HRI field,
in robotics in general. Indeed, creating its own platform allows the researchers to have a robot
that fulfils all their needs; contrary to using a ready-to-use robot (like NEXTAGE OPEN), which
will have some limitations and require some compromises. In our case, we aimed to answer specific
questions that would not have been possible with a commercial robot.

This project is a collaboration with designers, regarding the design of the object itself, and
the design of the interaction; with researchers/students from France, Japan and Costa Rica. The
pooling of knowledge from different fields or cultural backgrounds was essential in this project and
it is also important to me. Since the social in social robotics is a truly subjective topic, especially
regarding culture. It was important to share information to design social interactions.

In this chapter, we will describe the conception of the robot created to address the objectives
described in the introductory chapter: how to achieve social interactions without voice, and, here,
we few degrees of freedom and a non-anthropomorphic shape. In addition, the robot is designed
to be used for a long time, at home.

WE saw in the previous chapter the effect of an industrial robot with social behaviours

Source code
0 https://github.com/GVLaboratory/yokobo

The documentation of Yokobo regarding hardware and software.

4.1 Conception

We propose a presence robot with a new HRI approach called Human—Robot—Human Interaction
(HRHI), in which the robot plays the role of middieman between two persons. With this approach,
our robot (Figure 4.1), was designed to be included in a smart home with the main goal of re-
inforcing the link between people (e.g., a couple) [2, 5]. With that in mind, the robot will place
at the home entrance, and its objective is to welcome visitors or family members when they are
back. For reinforcing the link between users, it will transmit motion messages from one user to
another. Those messages are a mime of the person’s movement (limited by the robot’s movement
capabilities). Moreover, besides this, the robot has also a non-robotic function: being a ’key bowl’.
It has been named Yokobo, a portmanteau word from the Japanese word yokoso (welcome) and
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Figure 4.1: Parts and kinematic diagram of Yokobo. Dimensions of the robot in centimetres: H = 33;
L =36; W =24; ¢ = 15.

the French pronunciation of the word robot (the t is silent). The purpose of Yokobo is to be
included in a smart home, then it can use the data from the available sensors like a hygrometer or
thermometer. Thus, it can use those data to adapt its behaviours. Concerning the design, unlike
most robots with social interactions for homes sold on the market, Yokobo was designed with an
abstract shape. Moreover, its only way of communication is through its movements and lights.
Yokobo’s design approach follows the principles of slow technology [130]. Time is a key point in
this approach, it plays a role in the adoption of the object and encourages the user to reflect on
technology. By using this design method, Yokobo is created in a way that allows its user to slow
down, be surprised, and be reminded of the environment and their partner. It was proven by Odom
et al. [130] that this approach can “create feelings of anticipation, open spaces for questioning the
role of technology and even help to change routines”.

some Robot Assistant (RA) also appeared. They can accomplish several tasks, such as checking
emails and calendars or controlling smart home devices. The difference between VA and RA is the
physical presence of the latter, thanks to their movement abilities. One can mention, Elliq which
uses LEDs and body language to facilitate communication with users, with expressive motions [19]
or facial expressions. Thus, Haru [131] can express its mood by moving its eyes or changing its
shapes. Luria et al. [132] showed that RAs is more enjoyable than VAs and they are often preferred
because of their social embodiment [133]. Moreover, RAs provide direct interaction between the
user and the robot, and no other person is included in this interaction, even if the whole family
can use it; contrary to HRHI robots. Each person has a private canal with the RA.

With HRHI, the robot is designed to be in the centre of a relationship between two or more
people, being a catalyst in their relationship. Those robots are planned to create encounters be-
tween the users, and not just to serve as communication tools, such as social networking robots [42].
Furthermore, they can be distinguished from telecommunication robots, even if they are also using
an HRHI relationship, but here the robot is more an extension of the human and serves as an
enhanced phone.

Albeit Yokobo uses motions (like an RA), it has, in addition, the specificity of being a robject:
“embedding useful robotic technologies within everyday life objects” [134]. In our case, Yokobo
has been built around a key bowl. Thereby, even if it is not working, it can still be used, besides
its robotic function.

4.2 Related Works

4.2.1 Creating Encounters and Links between Persons

Recent efforts have been made to enable the formation of social encounters, for example, the
Abstract Machine by Anderson-Bashan et al. [135], which uses a greeting process usually only
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implemented for humanoids [136, 137] to new forms. One can also mention the weak robots [138],
which, by displaying signs of weakness, encourage humans to interact with them. Similarly, the
Ranger robot [139] catches the attention of children and helps them to tidy up their rooms. These
examples have proven ways for enhancing HRI or helping to accomplish tasks. However, one
important notion to consider when developing encounters is to deal with any possible feeling of
ostracism that the user may have because of the perceived rejection when a robot is fixated on a
task or with another user [140].

The telepresence robots are one example of the currently applied HRHI method, with, for ex-
ample, Haru [141]. Here, the robotic body serves as a user’s extension in real-time communication.
Nonetheless, the robot does not act as a bridge for communication, rather it serves as a tool to
provide an almost physical video chat experience.

Another case of robots implementing HRHI solutions are robots made to improve social inter-
actions in autistic children [142]. They help to make the relationships between the children and
the therapists better. Even if we can consider those robots using HRHI, it is more of a one-way
relationship. The goal of these robots is to help children to communicate, and they normally do
not help people to communicate with children. It is more of a H—-R—H relationship than an
HRHI; moreover, they are created for a specific target.

Rifinski et al. [143] conducted research about extended relationships with a robot. They in-
vestigated the effect of a robot considering a human—-human-robot interaction (HHRI), where the
robot is not central in the discussion, instead, it acts as a third-party observer. They experimented
on robotic influence and its associated movement when two people talked.

The robot Fribo created by Jeong et al. [42] went deeper, being what they called a social
networking robot (SN-Robot), with the aim to decrease the feeling of loneliness. The robot, using
HRHI, transmits some information about the person’s actions in their homes to their friends. It
acts as a middleman to inform, with voice, the group of friends (three persons equipped with
their robot) when one, for instance, opened the fridge; everything is shared anonymously. The
participants became attached to the robot during the experiment, especially because of the robot’s
voice. Moreover, the robot helped to catalyse conversation in the group of friends. Nevertheless,
Fribo is static and used only voice and screen to communicate, no movements are involved.

4.2.2 Form Factor

According to Campa [144], SRs are mostly humanoid or animal-like. Still, we could extend this
classification, based on their form factors, into four categories [145], i.e., humanoids, zoomorphic,
semi-abstract, and abstract ones.

The humanoid form factor facilitates social interactions since the user can rely on their own
experience to interact with the robot. However, the human figure can create distress in the per-
son [146]. That is why the zoomorphic robots can be more comfortable to people [147]. They
have diverse form factors, ranging from a dog, such as AIBO, to a sea urchin [148]. Hence, people
are driven to interact with the robot as they would with a pet [149]. Nonetheless, those two cate-
gories have psychological consequences, like creating strong attachments [150]. The next category
is the semi-abstract robots, they do not look similar to any living creatures, but the users can
imagine some human or animal shape and behaviour by pareidolia or anthropomorphism. They
can also be inspired by either a real or imaginary animal. One can cite Lovot [40], which might
share characteristics close to a penguin but with a face closer to an anime character. Finally, the
abstract robots resemble nothing biological, even if while interacting with them, it is possible
to deduce their behaviours, as shown in [135]. With (semi-)abstract form factors, the designers
are less constrained, and the users have fewer expectations about the robot’s behaviours [151].
However, their interpretations could differ because of the user’s backgrounds [152].

4.2.3 Perception through Reduced Robotic Movement

Studies have been done by Duarte et al. [153] about the concept of Non-Verbal Behaviour (NVB)
in order to transmit intentions with a humanoid robot. They demonstrated the possibility of
understanding intention only with motion. The participants of the experiment could understand
the robot’s intent thanks to the head /arm movements or the gaze. This finding can be extended to
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other robotic embodiments and not only human-like body parts. For example, Broers et al. [154]
showed it with a trash-can-like robot and Bevins et al. [155] with drones. We can also add the study
of Lehmann et al. [156], which showed that non-anthropomorphic robot movements are essential to
help users perceive engagement. Thus, with a 2-DoF robot, Anderson-Bashan et al. [135], showed
that people could see social cues with simple motions.

Furthermore, Hoffman et al. [123] also demonstrated the importance of NVB for a robot,
highlighting the value of the design process. They showed that a robot with positive emotions and
expressive motions is more inclined to be accepted than a complex anthropomorphic robot with
“unaffectionate motion”. The majority of studied robots are non-anthropomorphic, for instance,
Travis [157], a robotic speaker dock, and a listening companion. With only 1 DoF, this robot was
designed with music-aided movement to create a relaxing environment. Similarly, Luria et al. [132]
designed Vyo, a smart home assistant robot with five DoFs, and the motions were designed to
be respectful or reassuring. By using such design notions while in the design phase, it makes it
possible to build an agreeable atmosphere around the robot, accentuating the movement.

4.3 Contribution

We propose a novel approach in social robotics, where the robot is used as a bond between two
persons inside their homes. The robot is using greeting motions and is also interacting with them
at the home entrance. Yokobo has a semi-abstract shape to make it self-effacing in the HRH
relation, in order to help it to achieve its goal of being just a medium, and not creating a strong
attachment at the partner’s expense.

We also developed our specific protocol to test the previous aspects during two two-week ex-
periments organised in the wild. The participants could interact freely with Yokobo without any
specific scripted scenario. We propose a set of tools to analyse the interactions, the robustness of
the robot, and the users’ perceptions.

4.4 Initial Step of the Design

Yokobo was created with a three-stage design process. The first stage enables the greeting concept
identification, with the brainstorming by the designers to find the concept of our behavioural object.
The second focuses on Yokobo’s modelling, with shape and behaviour designs, by including the
engineers in the loop as well. The last one is aimed at realising the functioning prototype, applying
the Agile method [158].

4.4.1 Yokobo’s Shape Design

Yokobo’s shape was imagined alongside its movements. It is centred around two imaginaries:
Japanese ceramic and robot-like depictions, organic and mechanic ones, mixing circular shapes (on
the main pieces) and angular (on the edges). The ceramic imaginary provides Yokobo with more
precious, personal, and unique attributes. While the robotic one evokes the popular trend known
as mecha, via its edges and vents.

Based on previous fieldwork [159], it was essential to design a discreet, yet useful, object.
Yokobo’s physiognomy is an object that blends effortlessly in a home, specifically in the entrance.
Its shape is composed of four parts: a base, a body, an apex, and a bowl (Figure 4.1). Its
dimensions were chosen considering its ideal placement. The shape of Yokobo, abstract, is enough
to provoke social cues, and reduce the gap between expectations of people about the robot, and
its real capacities [5].

The location of Yokobo in the house has also been chosen for its symbolism. For example,
in Japan, the genkan (Z[) represents the separation between outside and inside, where guest
removes their shoes. It is the place where visitors are welcomed in the house even in Western
cultures and can be linked to the butler symbolism. The placement had an impact on Yokobo’s
shape, like the size, or physical placement in the room: hanging, on the wall, on the floor... For
the entrance, it has been decided to have Yokobo placed on a piece of furniture. The technologies
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Figure 4.2: Representation of the proximity levels around Yokobo (the black dot).

chosen (see sections 4.5 and 4.6) also had an impact on Yokobo’s design, for instance, the size of
the base has been enlarged to host all the electronics.

4.4.2 Services and Associated Functions

Yokobo’s concept, as a robject, allows it to function as a standard key bowl, for objects such as
keys or coins, or as a medium for house members to interact with each other. This non-robotic
function is linked to its location, for example in France, it is common to have a bowl or plate
called vide-poches (literally: empty one’s pockets) when one enters one’s home. Yokobo primary
communication means are movement and light. We drive the user to focus on Yokobo’s interaction
by dismissing the vocal notions, instead of just listening. The main question we had to answer to
build its functionality was, how to condense the richness of human greeting into a robject?.

Heenan et al. [137] showed that the greeting process was formed by a series of physical states,
such as handshakes or nods, coupled via a transition sequence using proxemics. Guided by the
above notions, the proposed solution focuses on proximity levels that serve as communication
guidelines for how Yokobo responds. It results in four levels of interaction that serve as the bases
for designing the behaviours of the robot: standby, state of the house, mimic, and record,
see Figure 4.2.

Standby is the robot status when nobody is in the entrance hall; Yokobo is active and has
periodical movements, guided by the Atmospheric Pressure (AP) and air quality (CO3) data.
State of the house starts once a person is near the robot, it continues the periodical movement
and expresses the home state through movements. Mimic is triggered when someone is close to
the robot. The robot then follows and reproduces human gestures. Record allows the user to
leave a gesture message by saving the data from the mimicking process to later show to the other
person. The lights, placed in the robot’s apex change when a message is played or recorded.

As a summary, Yokobo has four main functions:

1. Delivering messages between the members of the couple;
2. Being a key bowl;

3. Expressing the state of the house;

4

. Greeting the visitors.

4.4.3 Behaviour Design

Previous research found that minimal robotic movement allows humans to perceive social cues and
can cause feelings of surprise or engagement, according to the robot’s attributes [135, 152|. Inspired
by these results, the designers chose to shape Yokobo’s animations based on human reactions to
the ambient conditions [5], see Figure 4.3. Therefore, the reactions are:
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Figure 4.3: The anthropomorphic inspiration for the design of Yokobo’s behaviours according to the
weather data, from [5]

Humidity inside: when the value is high, Yokobo displays characteristics of human sleepiness,
hinting at slowness and human body stretching.

Humidity outside: it displays a movement, combining the body and apex, to suggest a human
sneeze.

Temperature: depending on the temperature variation, it shakes the body and apex, or has
slow movements.

CO; and AP: these values are used through Yokobo’s periodical movements to increase or de-
crease the motor speed. They are used to imply the human breathing alteration by a higher
concentration of COy or AP increments.

Time: in addition to the weather data, the current time has an impact on Yokobo. The light’s
colour changes depending on the hour with a shading that is orangish during the nigh and
white around noon.

By using all those parameters together, and even if they follow defined rules, it adds some
unpredictableness to Yokobo’s reaction. It makes then Yokobo more natural, indeed, if the robot
has predictable actions, it get closer to an automaton. Contrary to a human or animal that can
have unpredictable reactions.

4.5 First implementation

After the designers wrote the functional specifications they need to achieve, we create the first
architecture to fulfil their needs. We decide to use a Raspberry Pi (RPi, see Fig. 4.4) as the
main unit of Yokobo, because it is compact, affordable and with a big community that already
developed many solutions for it. Moreover, we needed something to interact with low-level sensors.
The RPi provides 40 connection pins, called GPIO (General Purpose Input/Output) to interact
with electronic components, in addition to common IT interfaces: USB, HDMI or RJ45.

4.5.1 Selection of the devices

For each need a specific sensor or actuator has been chosen:
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Figure 4.4: The Raspberry Pi 4B, the model used for Yokobo has 8 GB of RAM

Movement
The main way of expressivity of Yokobo is the movement, thus 3 motors have been selected
to move it, see section 4.6 for details.

Light
In addition to the movement, Yokobo can express itself with light. To have a wider range of
expressivity, 2 RGB LEDs were chosen to add colours. They are placed on Yokobo’s apex,
under the bowl, one for each side.

User detection
When a user is approaching Yokobo, it should be detected in order to start the interaction
process. To that aim, passive infrared sensors (PIRs) were chosen, see Fig. 4.5a. Those
sensors detect the infrared emitted or reflected by persons, animals or objects. It is used as
a motion detector.

Body movement tracking

For mimicking the user, the body posture and gesture have to be caught. The Raspberry Pi
has a specific connector for embedded cameras and it is natively supported by the OS. Those
cameras are small and connected with a ribbon cable, which facilitates the integration inside
Yokobo. Concerning the detection algorithm, it already exists several of them to detect body
posture, such as OpenPose [160] or MediaPipe [161]. Because we are using an RPi, some
limitation appears: first, the framework has to be available on ARM architecture and second,
it has to be light enough to run on the RPi. We decided to use the solution provided by Intel
called OpenVINO [162], it is based on OpenPose, and has been optimised to work on an RP4i,
using the Intel Neural Compute Stick 2 [163]. It is a CPU specialised to run AI algorithms,
it is used to overcome the limitations of the RPi’s processor.

Identification of user

Another function of Yokobo is to act differently if it is a visitor or a member of the family.
Hence, the user has to be detected precisely. To that aim, two technology has been selected:
Bluetooth and RFID. The Bluetooth will be used to detect when the user approaches, from
a further distance and wakes up Yokobo; using the Bluetooth Low Energy (BLE) technology,
with a key tag, it can be detected in a 10 m range. On the other hand, the Radio Frequency
IDentification (RFID), is used when the user puts their keys inside the bowl, and the RFID
works with a short distance, within a few centimetres. The RPi has already an embedded
Bluetooth device, however for the RFID, it requires the use of an additional sensor: MFRC-
522.

4.5.2 Printed Circuit Board

In order to have a robot compact, clean and easy to assemble and maintain, it has been decided
to create a Printed Circuit Board (PCB), and not use breadboards. It will have a double function:
power and connection.
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Figure 4.6: The v2 of the PCB with the TRACO to step down voltage from 12 to 5V. The big ribbon
cable on the bottom goes to the RPi. The other connectors are used for each sensor. The big connector
on the top left is for the power switch, the one on the bottom for the motor, and, finally, the metallic
connector in the middle is the power input.

First, it has to power everything according to the need of each component. The motors are
powered in 12V whereas RPi and other sensors! with 5V. Then, the first task of the PCB is to
downgrade the voltage from 12 to 5. The first design was using a buck converter module (LM2576-
5.0WT), but the 5V output was not working well so it was decided to switch to a TRACO, which is
more reliable, see Fig. 4.6. Another point that has to be taken into account is power consumption.
The RPi can consume at maximum 3 A (then 15 W), for the motor it depends on the load; then
we decided to provide at maximum 5A (then 60 W). Those have an impact on the choice of the
TRACO and the power supply (that has to supply at minimum 75 W).

Secondly, to manage the connection, all the sensors are plugged into the RPi with ribbon cables
and specific connectors. Thanks to them, there is no need to check the GPIO pins on the RPi,
and it avoid also false contact.

The circuit and routing diagrams of the PCB are available in the Appendix C.2 and C.3. To
undergo the aforementioned current, the PCB’s copper layer weight is 4 oz/ft? (11.3 g-m~2), hence
the thickest track is 80 th (2mm)?2.

4.5.3 Encountered problems

In addition to the problem of the buck converter, three others occurred. The most serious one was
about the RPi. Indeed, during the first tests, we realised it was struggling with all the algorithms
running. The Human Position Estimation Algorithm (HPEA) already uses 100% of one of the 4

IThe RFID reader is powered by 3.3V that are provided by the RPi.
2The PCB-making industry traditionally uses the imperial units
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Figure 4.7: Hardware architecture. The red arrows symbolise the power link, the blue ones the data,
and the purple ones both.

cores of the RPi’s CPU. The main loop script (see section 4.7) uses another one. Then the RPi
crashed often and the temperature of the CPU reached the limit of 80°C. Then it was decided to
use 2 RPis instead of one, to split the load, one for the sensors and the other one for the main
algorithm and motors command.

The second problem concerns the LEDs. After testing, the rendering of the colours was really
bad, too pinkish. Moreover, the luminosity was quite low. To avoid a long calibration process to
find a good way to render the colours, it was decided to use an RGB LED strip instead. It has
the advantage to have a better fidelity for the colour and a stronger luminosity. Finally, it had
another level of expressivity because, now, Yokobo has more than 2 LEDS, they are running all
around the apex.

The third problem is related to user detection. The performance of the PIR was not good
enough, especially because the designer asked to remove the plastic Fresnel lens around the sensor.
It was not compatible with the design they wanted. However, removing it decreased a lot the
performance of the sensor. We decided then to change the technology to Ultrasonic Sensor (US),
it avoids having a protuberance on Yokobo’s front.

4.6 Final Hardware

The final version of Yokobo has four DoFs, driven by three Dynamixel motors (Figure 4.1). M;
yaws the body around axis z1, Ms bows the apex, and M3 yaws the apex around axis z3. The three
motors are located inside the body, and the bowl freely rolls by gravity. The Denavit-Hartenberg
parameters of Yokobo are indicated in Figure 4.8.

Figure 4.7 describes the hardware architecture. The central units are two Raspberry Pis (RPi)
4B, one for the control, and the other for the sensors. The latter is upgraded with a USB Intel
Neural Compute Stick 2 (NCS) to run a human pose estimation algorithm (HPEA) on the Open-
VINO toolkit [160]. The LED strip and sensor (RFID reader and two ultrasonic sensors (USs))
connection is made via the RPi2 GPIO pins through a two-layer self-made printed circuit board
(PCB). The motors are connected directly to the RPil with USB and powered via the PCB. A
12 V-8 A power supply is used. The PCB dispatches that power to the motors (12 V-5A) and the
RPis (5 V-6 A) with a Traco. All the electronics are hidden inside Yokobo; only the power cable is
visible.

To detect when someone is nearing the robot, we use two USs around the base. To identify
a user personally. We use the house keys with an RFID tag to detect whether the key is in the
bowl. A wide-angle camera embedded in the body uses the RPis camera port. It is used for the
mimicking procedure.

4.7 Software

By improving the work in [137], two finite state machines (FSMs), one named the main decision
loop (MDL) and the other the motor control (MC), were constructed. The central software ar-
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Figure 4.8 & Table 4.1: Denavit—-Hartenberg parameters of Yokobo. With a2 = 10 mm that represents
the eccentric between M2 and Ms; and ds = 100 mm that represents the height of the bowl.
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Figure 4.9: Finite state machines designed to command Yokobo’s services and behaviours.

chitecture can be seen in Figure 4.9. It encapsulates the data acquisition process, along with the
central automata. Based on current sensor values, the first (MDL) decides how to switch between
behaviours. The MC receives the commands from the MDL to send to the motors. All data trans-
fers are done via the NEP framework we developed [110]. Since our approach follows a sequential
loop of actions, there was no need for parallelisation in the main state machines, the only subsystem
running in parallel to MDL and MC is the data acquisition, which constantly reads the sensors
and publishes the data through NEP topics. These data are read whenever the FSM calls for it.
The parallel process is in charge of acquiring the data and writing it to two specific buffers where
the most up-to-date sensor values will reside. One buffer is uniquely given and accessed per FSM.
Inside each FSM, to avoid reading the buffer while the parallel program is writing, a semaphore
method is implemented as a precaution. As a proof of concept, all programs are coded in Python,
except for the HPEA, which runs natively in C++.

Yokobo’s movement is either conducted by predefined motions or by a periodical movement
guided through a sinusoidal wave linked to its apex. This generator, in the MC, has the formula
hm = « - sin(w - t), where « is a value between 5 and 35 in proportion to the AP, w is chosen from
a range, 0.4-1.4, based on the CO5 readings, ¢ is the current time value.

The MDL state (Figure 4.9) switch is guided by variable s; it belongs to the set of weather
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data (wd), USs (ir), RFID sensor (r), and the person’s distance to the robot (¢p).
To summarise the MDL states:

1. Initialisation: it ensures the correct system boot-up and coordination among FSMs.

2. Idle: pause state while the first sensor’s data package is gathered.

3. Rest: the robot apex follows the movement defined by hm.

4. Wake-up: Yokobo displays an animation selected based on the current house temperature.
5

. State of the house: Yokobo’s motion is guided by Am. It can also do pre-defined animations
based on the two humidity sensor readings.

6. Go back to rest: an analogous process to the Wake-Up state, the difference being that the
motion is selected based on the outdoor temperature.

7. MDL mimic: The MDL commands the MC to enact its mimic behaviour or play a recording
of the previous trace. If r has no value, the robot mimics the user’s motion. Otherwise, it
moves to play a trace provided that the current RFID tag is not the same as the one that
left the message. The system then plays the current trace before recording. The light colour
(blue) signals the user the trace is playing.

8. Record: still mimicking, but now the person’s movements are saved for 10 s and the light
is set to green.

For the MC (Figure 4.9), s is outlined by the weather conditions (wd), HPEA body points (bp),
motor commands (em), and the MDL command (md), with values M R for mimicking or record,
M for playing an animation, or H.S for house state.

The MC'’s first state opens the motor ports, pre-loads all animation files, and sets the initial
positions for all joints. After the preparation finishes, the Idle state starts. Inside, the MC waits
for the MDL commands to either go to:

1. The Mowve state, where the animation data points are sent to the motors.

2. The House State, the node in charge of using the humidity-guided planned trajectory, apply-
ing the hm generator.

3. Continue Idle.
4. Move to the MC Mimic subprocess.

Furthermore, if the automaton keeps the same state, the periodical movement is enabled.
The motors are controlled through the Python Dynamixel SDK. The commands are given as a
motor’s position, then the Dynamixel motors reach the commanded position using their inner PID
controllers.

Lastly, the MC Mimic subprocess recognises and reproduces the following human movements:
sidesteps, bowing and twisting. These movements are also the ones used to record the trace
message. The algorithm reproduces the person’s motion by using the bp data and, in response,
outputs a valid motor command for the robot. The method is outlined below:

Sidesteps: the system obtains the human waist centre XY coordinates from the image data and
rotates the base motor so that the human is always seen in the field of (centre) view.

Bowing: the application checks the vertical motion of the user’s shoulders, neck, and hips. If one
of the first two is lowered below a given threshold, and the hip position has not changed, the
second motor lowers the apex.

Twist: the system captures the human shoulder width (Ls) and the torso length (Lt), viewed from
the front. It also continually calculates the shoulder width to torso ratio (Ls/Lt). This ratio
decreases when the user turns to the side because Ls becomes smaller. When this situation
is detected, the program determines there is a twist. It then rotates the top motor 90° and
reproduces the gestures.
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Figure 4.10: Architecture of the different algorithms of Yokobo. The program MAIN corresponds to the
MDL, and the program Motor control correspond to MC. The motor scripts (dashed in red) were split
into 3 different programs for technical reasons (clarity of the code). For a better understanding of data
flow, only the NEP programs that share the data between the 2 RPis are shown; but inside the RPi 1 there
is another script that exchanges the data between each program.

4.7.1 Architecture

As mentioned in the hardware sections, the different software was split into two RPis, to divide the
processing load. The two FSMs are running on the first RPi and command the motor according to
the data share through NEP from the other RPi. On the second RP1i, an algorithm for each sensor
is running in the background and sends/receives constantly the data via NEP. We decided to split
each block to have easier maintenance of the whole code. Moreover, the program for reading the
weather data works only every 10 min due to the update frequency of the weather data on the
server.

Finally, two bash scripts were made, for each RPi, to run all those programs when the RPis
start. The bash scripts called the scripts in the right order, and allow Yokobo to be ready-to-use
when it is switched on, without requiring someone to run each script. In chapter 6 we will see that
another program is called to allow the Bluetooth configuration. Figure 4.10 sums up the software
architecture.
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Summary

Yokobo is a presence robot for the home entrance, with the aim to create a
link with HRHI between two members of a couple.

It uses movement (with 3 motors) and light (RGB LED strip) to express itself.

It mimics the human gesture thanks to a Human Position Estimation Algo-
rithm, and transfer them as kinematic messages.

The software uses two Finite state machines to adapt the behaviour of Yokobo
according to sensors’ data.

Achievement: Siméon Capy, Pablo Osorio, Shohei Hagane, Corentin Aznar,
Dora Garcin, Enrique Coronado, Dominique Deuff, loana Ocnarescu, Isabelle
Milleville, and Gentiane Venture. Yokobo: A robot to strengthen links amongst
users with non-verbal behaviours. Machines, 10(8), 2022. ISSN 2075-1702. doi:
10.3390/machines10080708. URL https://www.mdpi.com/2075-1702/10/8/
708 [2] (Editor’s choice paper).

Yokobo also got the “Kawaii Design Award 2021” from the Kansei Engineering
Society.
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Technical Experiment with Yokobo

was designed to be used by young retired people, we can still validate the technical stability

regarding the human greeting, and the smooth operation of the robot. The experiment was
split in two, the first one as a pilot study to set all the parameters of Yokobo and test the reaction of
the user in order to adjust everything before doing the second one to deeply test the HRI. The two
experiments are the same, except for the content of the questionnaires, see the next section 5.1. The
experiments are called Experiment 1 (E1) and Experiment 2 (E2). As mentioned, E1 was designed
to serve as a preliminary test, in order to gather initial stability characteristics, reception metrics,
usability score, and first perceptual accounts. During this experiment, Yokobo ran non-stop for
the first week. However, several issues happened when the mimic/record state was enabled. The
principal difficulty happened with the motors’ commands from the Motor Control (MC) because
of a faulty middleware that converted the motor data package to commands. Regardless of these
errors, the situation was rapidly handled, and it was possible to continue the experiment for three
days (12-16 h/d) and two reduced days (6-10 h/d).

This first experiment pointed out the necessary technical changes that Yokobo needed to im-
prove its stability and user reception. From the experimental tools, it was possible to observe that
the problematic aspects involved the message-handling procedure and the sudden motor stoppage.
These hampered the users from fully interacting with the robot.

THE purpose of the experiment is to validate Yokobo’s technical stability. Although Yokobo

To handle the aforementioned problems, we decided to improve the hardware architecture. This
change provided more computational resources for the HPEA and the motor control. Moreover,
the software part was upgraded to avoid false sensor triggers and improve the transition functions
logic. These changes permitted a faster interaction among motors and data acquisition, which
translated into optimised behaviours.

The experiment E2 started after we integrated the updates into Yokobo. In contrast to El,
Yokobo could run non-stop during the two weeks of E2; besides a few resets during the weeknights
needed to prevent motor failure in case of wrong positioning. We can mention another problematic
situation that happened on the last day of the experiment: a false switching between the states
of the FSM occurred while an animation ran. It reduced the experimental day by two hours, but
hopefully, this problem was resolved before most of the participants arrived at the office, and then
it did not impact the results.

The next sections detail the experimental settings and the results. A comparative analysis is
also presented, which shows the upgrade’s impact on Yokobo’s overall qualities and capabilities.

5.1 Experiment Settings

The experiments were designed to be done in our laboratory. Figure 5.1 sums ups the mainlines
of the experiment. The research questions that drove the experiment were:
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1. Graffiti wall method

2. Questionnaire & Semantic test (“Kansei”)
3. System Usability Scale (SUS)

4. Log files

. Yokobo only expresses the state of the

lab

2. People's perception of the robot motions . In addition, Yokobo can mimic person’s
3. The users reception towards Yokobo movements and send messages
4. The usability and user experience between partners
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. Visitors, anyone that interacts with
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. 10 selected participants that can send

messages with their partner, thanks to

their key tag

Figure 5.1: The mainlines of the experimental setup

B yokobo APP 17:14
B & Simeon is never late, nor is (s)he early, (s)he arrives precisely when (s)he means to. g§

See you soon, Simeon!

yokobo APP 17:23

&' Simeon is in the lab!
Simeon did the job, and left! §§

& CAlCB(E SimeonE A,
Simeon just left the lab! ﬁ

Figure 5.2: Example of clock-in/out message in the Slack channel. The messages are randomly chosen
from a list. The name of the user is read from the RFID key tag.

Q1 How long is Yokobo capable of running continuously?

Q2 Are the users capable of perceiving motion qualities from their partner by using
non-verbal gestures and the proposed mimic algorithm?

5.1.1 Participants and schedule

Each two-week experiment was split into two phases of one week each. During the first week, the
robot is accessible to anyone in the lab, and the participants can interact freely with it. The mimic
functionality is available to the participants, and they can explore the interaction with Yokobo
and look at how it behaves according to its environment.

During the second week, some Selected Participant (SP), can interact deeper with Yokobo, thus
we made the messaging functionality available. They can exchange a specific kinematic message
with their partner. Each SP are paired, and has a specific RFID key tag. Then Yokobo knows
who is approaching and to whom to send the message. To make Yokobo a part of the laboratory,
when a participant clock-in/out, a message is sent to the lab’s Slack channel (see Fig. 5.2).

5.1.2 Tools

The main goal is to gather the participants feeling about the robot during the long-term experiment,
to see if there is some evolution. But also to check if Yokobo can work without problems during
the two weeks. Then, several tools are used with a specific purpose.
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a) Graffiti wall

The first tool is the graffiti wall method [164]. A whiteboard is located close to Yokobo and
different questions are asked to let the participants express their impressions freely while they are
using the robot. Thus, they can give a spontaneous reaction. We replaced the questions every two
days with a total of four questions, to gather information regarding the feelings, experiences, and
perceptions the participants have about Yokobo. These are asked in English, and the participants
can answer by drawing or writing in any language. This tool was available to all participants,
selected or not, and visitors of the lab as well. A sample of the participants’ answers is available
in Appendix D.2.

b) Questionnaires

The next tools, two and three, are part of four questionnaires, send at different moments. Concern-
ing E1, a unique questionnaire (Q) is sent at the end of the experiment. For E2, one (QS) is sent
just before the start of the experiment. The second one (QW1) at the end of the first week, and
QW2 at the end of the experiment. The questionnaires Q and QW2 are sent only to the SP. The
difference in the number of questionnaires between E1 and E2, relied solely on additional semantic
analysis and the evolutive metrics we wanted to observe; since the first experiment was essentially
a pilot study.

Figure 5.3 sums up the content of each questionnaire described in the next subsections. The
Likert part for Q and QW2 has also a question about the attitude of Yokobo after check-in.
This question uses a free-speech box. There is also a free-speech box at the end of QW2 for any
additional remarks.

a. Semantic test The second tool is a semantic test based on Kansei Engineering (q.v. sec-
tion 2.2.1), combined with custom questionnaires (see 5.). With bipolar adjectives, the semantic
differential questionnaire allowed us to obtain how the participant will characterise the robot, given
a number of selected concepts [165]. The 18 adjectives used for this semantic test were chosen by
following the recommendations presented in [56, 124]. The word selection is decisive to guarantee
that they are relevant to the design of the robot. These word sets were collected after consulting
experts in the domain or reviewing state-of-the-art articles. The proposed semantic assessment
uses the semantic scale to measure the concepts of interest, Behaviour, Interaction, and Appear-
ance. The semantic scale uses two bipolar adjectives with a scale between 1 and 5; 1 means the
answer is close to the positive adjective, and 5 is closer to the negative one.

B. Other questions The rest of the questionnaire is composed of several parts. First de-
mographic questions about the age, gender, nationality, knowledge about robots and knowledge
about Yokobo (the latter only for QS). For E2, we also ask the students to enter their student ID
in order to match each questionnaire (QS, QW1 and QW2) without asking for their names. It
guarantees anonymity since the researchers do not know the link between IDs and student identity.

The second bunch of questions is using Likert scale to collect information about behaviours,
motions and experience, and to evaluate the Curiosity, Happiness, Fearfulness, Enthusiasm, Con-
fusion and Friendliness sentiments experienced by the users throughout the two weeks of experi-
mental sessions. For QW2 additional questions are asked about the messages sent in Slack, if they
found them Useful, Funny, Annoying or Intrusive.

Then comes from different blocks, one about the kinematic messages exchanged through
Yokobo. We ask the number of messages they send and received and if that is easy or hard. We
also question the feeling of their partner by those messages, and if they can feel a connection.
Those questions are asked with Likert scale questions and free-speech boxes.

Then we ask questions about the design of Yokobo. Since it has an abstract shape, we are
curious about the word the participants will spontaneously choose to describe it. We use for that
a picture with markers (see Figure D.1) and let the participants use their own words.

We also ask participants, for QW1 and QW2, how many times they interacted with Yokobo.

Finally, for Q, we have three questions about the partner. Because it is a pilot study, we want
to test an additional point: can the participants identify their partner? Then they are paired by
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Figure 5.3: The composition of the questionnaires, for the first experiment (E1) and the second one (E2),
with the questionnaires sent at the beginning (QS), midtime (QW1) and end of the experiments (Q and
QW?2). The red circle indicates the number of questions.

the researchers without knowing their “soulmate”. Hence, the questionnaire of the first experiment
is not anonymous.

The questionnaires are available in Tables D.1 and D.2 of the Appendix D.1, the different scales
used for each question are indicated.

~v. SUS The third tool measures Yokobo’s usability with the SUS (refer to section 2.2.8). The
questions and results are available in Table D.3 of the Appendix D.1.

c¢) Logs

The last tool is the interaction logs collected by the robot. These are used to verify the hardware
and software robustness and provide metrics about the interaction time, sensor variations, and
motor usage. The data are gathered each day and transferred to a cloud drive during the night,
in order to be accessible. A second log file, not used for the experiment, is also sent with the
temperature of the RPis’ CPU, to monitor any failure.

5.2 Results

5.2.1 Robustness, Stability, and Usability

During E1, 6/10 participants pointed out that the recording process was complicated and not
intuitive (from the graffiti wall, and discussions with the participants at the end of the experiment).
They had difficulties interpreting the light signal and then understanding which state the robot was
in. Moreover, there was a time delay between the person’s motion and Yokobo’s replication, it was
too long and did not seem to follow the user’s movement concurrently. The log files pointed out
that movements and messages were being recorded correctly; nevertheless, the motors’ unexpected
failure impacted the transmission of the message. The questionnaire (Q) for E1 pointed out
that three participants could not send or receive any messages, and two couples managed to do
both. It is confirmed by the log files since 7/10 participants tried to send at least one message,
(Figure 5.4). On the other hand, regarding E2, all participants interacted with Yokobo. The
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Table 5.1: Semantic analysis results (second experiment). Lowest score—positive adjective; highest
score—negative adjective.

Cpt Dimension (Score) Semantic Evaluation (%)
Positive (1) Negative (5) Qs QW1 QW2
5 Dynamic Static 2.7(1:0) 2.2(1.0) 2.6(1:0)
2 Smart Stupid 2.2(0-8) 2.7(07) 2.4(0-9)
%3 Simple Complicated 2.5(0-9) 2.3(0:9) 3.00:9)
/M Responsive Slow 3.1(0-9) 2.9(1.2) 3.2(0-8)
g Lifelike Artificial 3.200-8) 2.7(0:9) 3.40D
§ Emotional Emotionless 2.7(1:2) 2.6(1:0) 2.9(0:9)
) Familiar Unknown 2.1(0-8) 2.6(1-1) 2.1(0-9)
k= Useful Useless 2.4(0-5) 2.7(07) 2.0007)
2 Desirable Undesirable 2.9(0-8) 3.000:3) 261D
= Cute Ugly 1.5(0:5) 1.9(0-3) 1.6(0-5)
g Modern Old 1.5(0:5) 1.90®) 1.5(0:5)
& Attractive Unattractive 1.9(0-5) 2.1(0-3) 2.1007)
< Like Dislike 1.8(00) 2.1(09) 1.70:7)

majority of participants (9/10) managed to send and receive the same amount of messages with a
mean of two messages sent with a standard deviation of 41, meaning one partner sent one, and
the other member received it and sent it. The participant that suggested that s/he did not receive
messages (from the questionnaire answer) may have confused the motion message by the usual robot
movements, explaining why it was the only case that presented this situation. The logs also confirm
this idea because both users’ data are present (sending the messages), and the motion played was
related to the actual body point data observed in their movements. We can also mention that
6/10 participants also indicated the movement as coming from Yokobo rather than their partners,
which can be explained by the animations that may have been triggered as part of the mimic and
recording sub-process. Nonetheless, during E2, 40% of participants agreed that Yokobo helped
them feel their partners and 30% were neutral (from the questionnaire). Yokobo was acting like a
bridge between them, validating the possibility of transmitting the presence of someone through a
robot. Although some of the results may, at first sight, hint toward a negative result, it was the
opposite. If we compare the difference between the results of E1 and E2, 6/10 participants agreed
that the recording process was more intuitive than in E1, validating the improvement done on the
hardware/software performance and on the better light indication about Yokobo’s current state.
The time lag between the robot’s and user’s movement was reduced, which translated to further
exploration of the robot’s capabilities and an improvement in the average interaction time: with
an increase of 38.85s (indicated with the red line in Figure 5.5). The latter can be observed as a
partition by participants and daily cumulative interaction time in Figure 5.4, where it can be seen
that there is an increment of the interaction time by participants in E2.

Yokobo’s SUS score after E1 was 66.11. Concerning E2, Yokobo obtained an average grade of
63.25. Nevertheless, after splitting the result between the participants who were part of the first
and second experiments and, the participant of only the second one, we obtain a score of 61.43,
and 67.5 respectively. The old participants have a lower rating on average by 2.5 points, with
two edge cases with decrements of 10. Even if the grade seems low, the value is a passing grade.
Actually, on average, a system rating is around 68; an example of a grade 61 product is the Apple
Watch [166]. The difference between the two groups can be explained by the difference between
the previous experience that the participants already had with the robot and the expectation
of what the current version might have had as an added feature. Both grades pointed out that
the interaction still needed improvement to be more reflective of the pairs. Overall, half of the
participants (5/10) agreed the robot was easy to use, intuitive enough to learn by themselves, would
like to continue using it, and was well integrated but needed further improvement in the recording
function; 2/10 were neutral; 3/10 rated that the system needed more improvement. With this
feedback, we could increase Yokobo’s usability by improving the recording behaviour and filtering
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which points are saved on the message (disregarding the animation).

5.2.2 Perception and Reception

The graffiti wall showed a positive perception of the greeting motions. Participants liked being
welcomed by Yokobo. Some even interpreted them (i.e., the greeting motions) as good manners,
even if it was not programmed so. For instance, two participants thought the bowl moved down
to interact with it more easily.

From the log files, the time users spent interacting with Yokobo, from the Wake-Up to the
start of the Go Back to Rest state (Figure 5.5) was analysed. The maximum interaction time
spent for E1 was 826s (13 min 46s), the minimum was 16s, with an average, over the two weeks,
of 76s. We can also mention that this time for the second week showed an average increase of
21.9s; this corresponds to more visitors interacting with Yokobo, as can be observed in Figure 5.4a.
Concerning E2, the average was 113.24 s, with a maximum of 1307 s (21 min 47s) and a minimum
of 13.39s. The minimum time corresponded to a person detected but not a complete interaction
in both cases. The main difference that could be seen in Figure 5.5a between experiments is an
increment in the average exchange and significantly fewer faulty sensor triggers. It shows how the
upgrades manage to reduce this false interaction, which also explains the reduction in the sample
quantity. The trend also demonstrates that extensive exchanges appeared during the week and
were not condensed to single days. In contrast to E1, the average visitor interaction time for the
second week did reduce; this can be partly attributed to the experimental days being in the middle
of the holiday sessions and the end of the school semester. Still, there was a significant increment
in the SP interaction when comparing Figures 5.4. However, the maximum time can be associated
with the mimic procedure and the participants’ curiosity; measured with the questionnaire, by the
end of week two of both experiments, were high, with an average rating of 3.7/5.

Participants had longer interactions with Yokobo during E2 with an average increment of
37.24s, not only the new participants but also the ones that participated in E1. For example,
participant 2 (P2) presented more extended and frequent interactions than before. In general, this
trend and the increment of the average interaction time plus the improvement of the semantic
analysis evaluations (Useful and Familiar ) showed that the user wanted to use the robot contin-
uously. However, in both experiments during the second week, the visitors, especially for lengthy
interactions, may have had a perceptual bias due to their desire [167] and perceived scarcity [168]
to use the robot to its full capabilities as the SP could. Nonetheless, both experiments provided
enough arguments to show that participants wanted to further interact with the robot, providing
a clear guide towards surpassing the novelty effect. However, more data are needed to make a
conclusive argument. Due to the slow technology principles used for Yokobo, the more time the
users spend interacting with the robot, the better it is. We are looking for them to discover the
functioning of the robot by themselves, we are not looking for efficiency (as it can be with usual
robots or products).

Another interesting fact from the logs of both experiments is that several participants split
into subgroups of two or three users. This formation introduced an increase in interaction time.
Yokobo may have been a conversation starter and a tool for users to find common ground. By
creating these social scenarios, the participants further understood Yokobo’s capabilities on their
own or in their subgroups, making the interaction with the robot clearer. This may explain the
average ’decreasing’ rating for the fearfulness sentiment.

A related observation is that the extended interactions happened when clocking out with the
RFID tag, meaning between 16:00 and 18:00. We hypothesise that one possible explanation is
because of the daily schedule situations. When users first tag in, they might be rushing to start
their daily activities; however, when tagging out, they may have extra time to spend with Yokobo
and their colleagues.

The collected data from the semantic evaluation are shown in Table 5.1. The Concepts (Cpt)
that were analysed are presented, along with their respective Dimensions. Dimensions tend to the
positive side (lower than 3) with a standard deviation around one. When comparing the different
concepts, we found that the reception towards Behaviour was positive. A total of 6/10 participants
agreed that the system was dynamic, smart, and straightforward, in line with the proposed design
notions; 2/10 were neutral, and the other two participants thought it was static and unintelligent.
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Figure 5.4: Participants cumulative interaction time for both experiments (from T-L), D for days (from
1 to 12), W1 and W2 for weeks; each bar corresponds to a user. New participants for E2 are denoted as
P2 plus their respective tag numbers. The pattern for each participant represents the couple they belong
to. Each bar corresponds to the cumulative interaction time that each SP and the V group had with
Yokobo per day. The V group is also considered since their interaction is valuable to differentiate between
groups and how each one decides to interact with the robot. The graphs also show that, on average, each
SP left at least one message per experiment. This result, in combination with the data acquired through
the questionnaire, allows us to discern patterns associated with the robot’s interactions, robustness, or
personal perceptions, which (later on) is beneficial to discover the pain points associated with Yokobo’s
interactions and qualifies the perceptual impacts it had on the user.
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Figure 5.5: Interaction time throughout both experiments. Each sample represents an interaction with
Yokobo that completes the states loop, i.e., Wake-Up trigger to the start of the Go Back to Rest state. This
interaction time is measured in seconds and composes every interaction without differentiating between
SPs or V. The values associated with the minimum, maximum, and average times for both experiments
are also shown. The maximum interaction time spent for E1 is 826 s, the minimum is 16 s, and an average
of 76s. For E2 the average is 113.24 s, the maximum is 1307s, and the minimum is 13.39s.
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Responsiveness is the dimension with the highest grade, indicating that the robot’s system flow was
not yet appropriate, and users expected a more fluid interaction. The latter was associated with the
recording process difficulties described above and the transitional animations between the states,
which may be perceived as too artificial. Concerning the dimensions of Interaction, even though
on the positive side, they presented a negative tendency with the lifelike and emotional dimensions
having a mean value close to 3. As seen in the semantic analysis (from the questionnaire) and
the logs, the messages recorded and the behaviours were not fully understood. Participants were
neutral regarding the emotional content of the animations, with an average value of 2.9 and a
small standard deviation. On the other hand, Appearance followed the same positive trend as
Behaviour, with desirability being the least positive dimension. The first two concepts (Behaviour
and Interaction) could be improved by making the robot more intuitive (legible trajectories or
special gestures) and adding other perceptual signals for the user, such as a sound or a clearer light
display.

Interestingly, 7/10 users found Yokobo more complicated over time, especially for E2. The
Confusion sentiment by the end of E2 increased by 0.3. It would be necessary to improve the
message cues and sequences for the user to understand it better and differentiate between Yokobo
states, movements, and animations. Similarly, the Curiosity increased once the recording func-
tionality was enabled before decreasing at the end of E2. This may have appeared to hinder the
overall results; however, it was, in fact, the opposite. Yokobo is designed with the notion of slow
technology, such that the users cannot fully understand the robot in a single interaction. Instead,
it is a medium or a reminder of what is around them [130]. The users may be surprised or con-
fused by the robot at different moments of their interactions and have continuous shifts in their
perceptions.

Moreover, participants were asked about the word they would use for each part of Yokobo. A
total of 7/10 participants used anatomic words, such as head, body, and torso. Using these words
to describe the robot, they identified it as a living creature, utilising pareidolia. The qualities
participants used to describe Yokobo were smart, modern, and cute.

According to the graffiti wall, participants seemed interested in Yokobo, and the shape was
trustworthy. The concept of robject was also evaluated. We regularly observed in the answers
some mentions about the bowl. Some users wrote about what was inside: words such as “pick up”
or “offering” were used.

Finally, regarding Yokobo’s office integration, 8/10 participants described its interaction as
welcoming and 2/10 were neutral. After setting their RFID tags on the reader, they felt it displayed
a greeting attitude, energetic, and whimsical. A total of 8/10 found the clock-in—out function useful,
and preferred to do it this way; the other two participants were neutral about it.

Summary

— We performed two different experiments in our office to test Yokobo’s robust-
ness, perception, reception, and usability.

— It proved its ability to work for extended periods of time.

— Participants felt welcomed and greeted by it. They perceived it as intelligent
and a “welcoming partner”.

: — During our two-week experiment, 40% of the participants could feel his/her
partner, proving the capability of this concept.

— Achievement: Siméon Capy, Pablo Osorio, Shohei Hagane, Corentin Aznar,
Dora Garcin, Enrique Coronado, Dominique Deuff, Ioana Ocnarescu, Isabelle
Milleville, and Gentiane Venture. Yokobo: A robot to strengthen links amongst
users with non-verbal behaviours. Machines, 10(8), 2022. ISSN 2075-1702. doi:
10.3390/machines10080708. URL https://www.mdpi.com/2075-1702/10/8/
708 [2].
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Integration of Yokobo into Smart
Homes

robot in this environment, it is required to configure it. As a proof of concept, Yokobo is

using data from a unique IoT device: a weather station; but additional devices could be
used. The interactions with and the perception of the robot by the users are studied in chapter 5
for the technical experiment. This chapter focuses on the integration of Yokobo into the smart
home, with the configuration process. Because Yokobo will have to be settled in people’s homes,
the incorporation should be easy and non-intrusive.

With the democratisation of the Internet of Things (IoT) devices, the number of smart homes
is increasing. Those homes use automation systems to achieve some function remotely, such as
lighting, surveillance or heating. Thanks to a user interface, the users can monitor or control their
home, even from outside. Those interfaces are diverse, like wall-mounted panels, vocal assistants
or smartphones [169, 170]. A plethora of devices can be connected, such as light bulbs, weather
stations (WS), thermostats, cameras... The connection between the devices can be made with
wires or wireless, using ZigBee, Bluetooth or Wi-Fi protocol. The latter tends to become the most
popular way to connect the devices in one’s home, thanks to its ease of use, and nowadays, most
homes are equipped with a Wi-Fi router [170]. Finally, the democratisation of vocal assistants,
for instance, Amazon Alexa or Google Assistant, creates ready-to-use ecosystems for the users.
Indeed, the assistants’ manufacturers provide an API that allows third-party firms to incorporate
their own devices into the assistant ecosystem. Then, the end-user has just one system for managing
everything.

SINCE the goal of Yokobo is to be a part of the smarthome to explore the use of a social

Source code
O https://github.com/GVLaboratory/yokobo-app-android

The source code of the Android application

6.1 Related Works

6.1.1 Robots in Smart Home

Romeo et al. [171] described the merging of robotics and IoT as the combination of Communication,
Perception, Control and Computation components, taking advantage of cloud computing. The
robots should communicate with their environment to share data, generally by Bluetooth or Wi-
Fi. Thanks to the latter connection, they can also externalise some computation tasks on the
cloud. They have also to perceive their environment with various sensors, and they can also
affect it with actuators, using control intelligence to make decisions based on all that data. The
authors called it the Internet of Robotic Things (IoRT). While they mainly focused on (service)
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industrial applications, some can be extended to smart homes, such as surveillance, education, and
healthcare. Several commercial products have been proposed for those purposes that we can call
simply domotic robots.

One of the earliest IoRT for home is Nabaztag/Karotz [43] with the purpose, for example,
to read users’ emails or fetch weather forecast data on the Internet. However, it does not take
advantage of the home’s data. It only searches for information on the Internet. The second version
adds one functionality with the RFID tags to read books. Even if the company, Violet, stopped
the service, some community-driven projects have been created, such as Open-Karotz. The users
can develop additional functionalities than the default ones and then incorporate the robot into
their smart home.

Other everyday robots are for chores such as hoovering [172], mowing or cleaning, but they are
not taking advantage of the smart home besides using voice control or allowing to start/stop the
routines by an application.

Concerning the three domains cited by [171], one can mention Amazon Astro. A 2021-realised
surveillance robot for one’s home [173]. It can be controlled remotely or warn the user. It can
also serve as a telecommunication robot thanks to its screen. Taking advantage of the Amazon’s
assistant, Alexa, the robot can achieve familiar tasks such as controlling the lights or the shutters.

Education is also a common purpose for a home’s robot, for instance, to teach programming
or robotics to children, like Clicbot [174] or Roybi [175]. Jibo [41] is a robot that can be used for
education and care. Nonetheless, their integration is limited to being connected to the internet.
They do not take advantage of the smart home.

Nevertheless, one of the most common applications of IoRT is for healthcare, for example,
Elliq [17]. This robot was created to assist older adults’ daily life with tasks such as news reading,
weather forecasts, music, video calls, and more. It was built to be a robotic counterpart to the
vocal assistant, yet it is not a member of the smart home, not being able to interact with other
devices.

Do et al. went further into the IoRT with RiSH, a robot-integrated smart home [176]. Here
it is more the robot that creates the smart home by adding many sensors/actuators for elderly
care; e.g. it can be used for fall detection thanks to microphones. The user’s (thanks to wearable
devices), the home’s or the robot’s data is gathered in a home gateway and can be sent to a remote
server for further processing. Then the robot can have access to more information rather than only
relying on its own.

One can finally cite Michal Luria et al. work, in which they created a robot called Vyo to be
the central interface of the smart home, and they compared it with a voice assistant, wall panel
and a smartphone [177, 178]. They designed an arm-shaped robot using non-verbal behaviours
and tangible icons to control the home devices and interact with the user. Although here the robot
has the same purpose as existing devices such as a wall panel or a vocal assistant, the robot is only
a robotic remote controller.

When we compare those robots, see Table 7.1, especially the commercial ones, we can see a
typical pattern for communication. Firstly, as described in the introduction, Wi-Fi is a significant
characteristic of domestic robots and smart devices. Secondly, we can extend this with Bluetooth;
only the oldest robot on the table, Karotz, is not compatible.

We can even add vocal assistants like Amazon Echo, Google Home, or Apple Homepod that use
both norms and communicate only remotely. Even some other devices like surveillance cameras,
doorbells or thermostats that do not frequently move, like vocal assistants, do not have a wired
connection; due to the inconvenience to set cables everywhere in the home. The previous highlights
that users expect smart devices (and robots) to be connected wirelessly and managed remotely.

Finally, we can study the home’s IoT data usage by the domotic robots. When the robot
accesses them, it is often for sending a command or displaying some data like Vyo or Astro (like
vocal assistants or most home automation systems [170]); they do not adapt their behaviours.
When the robot uses them, it is primarily for care purposes. In the case of Jibo, it can connect to
medical devices, but only to warn the user/doctor when something abnormal happens. RiSH [176]
goes further by adding plenty of sensors in the home, such as microphones, cameras or infrared
sensors. However, all of this ecosystem is created for the sole purpose of the robot.
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Table 6.1: Comparison of some domotic robots (NM: not mentioned)

Yokobo Karotz [43] Vyo [177] | Astro [173] EliQ [17] Jibo [41] Roomba [172]
Year 2021 2006 2017 2021 2017 2015 2002
Commercial No Yes No Yes Yes Yes Yes
Wi-Fi Yes Yes NM Yes Yes Yes Yes
Bluetooth Yes No NM Yes NM Yes Yes
Mobile No No No Yes No No Yes
DoF (except moving) | 3 + 1 2 5 3 2 3
Camera/ Yes (tablet)/
human recognition Yes/Yes Yes (v2)/No Yes/Yes | Yes/Yes NM Yes/Yes Yes/No
Sp.eaker/ o No/No Yes/Yes Yes/No Yes/Yes Yes/Yes Yes/Yes Yes/No
voice recognition
Screen/ ] ‘ ‘ Yes (tablet)/
Expressive light No/Yes No/Yes Yes/No Yes/No Yes Yes/No No/No
Application Yes No No Yes Yes (tablet) | Yes Yes
Shape Abstract Rabbit Arm Rover Abstract Abstract Round

No . . .

Use IoT data Yes (possible with APT) Yes Yes (with Alexa) | No Medical devices | No

Care . Surveillance Care .
Purpose Communication Entertainment Control Communication Care Education Hoovering
Configuration App PC program NM Screen Screen QR-code App

stso} (U S.Ade) uoguuig



Chapter 6 — Integration of Yokobo into Smart Homes

6.1.2 Configuration of IoRT

Comparing the different robots again shows that all recent robots are provided with an application,
especially devices without a screen. Nowadays, people using smart devices are used to having an
application to manage them. Indeed, nowadays smartphone is a standard tool that most people
possess. For example, in France, as of 2021, the possession rate of a smartphone is at least 82.8%
for people under 59 years old [179]. Brohl et al. studied the device type usage preference amongst
PCs, tablets and smartphones for daily activities by user generation group. Even if they did not
look for configuration activities, their analysis shows the adaption of smartphones [180]. Most
users from the young generation (19-36 y. o.) prefer to use a smartphone or a tablet. Even the
next generation (37-52 y. o.) selects the smartphone, even if it is close to the PC (32.4% and 31%,
respectively). One can see that a smartphone is now a standard tool for daily activities for people
under 60.

Concerning the configuration, when the robots come with a touchscreen, it is generally used as
an input device; otherwise, an application is used. Jibo uses an original way by generating a QR
code, from the application, with the network credential info. The user just has to present it to the
robot’s camera. Roomba, the vocal assistants and the weather station Netatmo (see chapter 4)
use the smartphone by establishing a direct connection with the robot/device (either by Bluetooth
or Wi-Fi) to send the Wi-Fi information. This method is simple to use thanks to already known
interfaces and reduces the number of operations. Moreover, it has the advantage of not requiring
to physically access the device by connecting a screen or a cable, which is less user-friendly. Due to
the latter, we decided to use the smartphone method to install Yokobo into the home. According to
Anderson et al., familiarity is one of the key elements of an engaging User Experience (UX) [181].

6.1.3 Usage of Single-board Computers

As described in section 4.5, the Raspberry Pi (RPi) is a credit-card-size single-board computer
(SBC), available at a low price (less than 100 US$), with diverse types of wired and wireless
connections.

Because the RPis are a popular tool for prototyping systems involving electronics, several
projects for smart homes using them exist in the literature. It is an ordinary, cheap, easy-to-use,
and fully customisable tool for IoT projects. Projects span from for controlling the temperature in
a room [182], watering plants [183] to managing a whole home [184]. One can also find projects to
manage the parking lots of a smart campus [185]. Nonetheless, all those projects share the same
way to configure the RPi, beforehand with a Screen, Mouse, and Keyboard (SMK); this means
that setting up the system in a new environment, requires some technical skills.

Indeed, it is not possible to configure a raw RPi in a user-friendly way, as described in sec-
tion 6.1.2. To connect it to a network, one has to either connect an SMK, or a LAN cable or
modify the configuration file directly on the micro-SD card [186]. Those methods are not possible
due to the nature of Yokobo since they are not user-friendly and contradict the current standard
methods of configuring IoT devices.

We can also mention some other SBCs, such as Orange Pi, Beagle Board, or Nvidia Jetson.
Those use similar methods as RPi for the configuration, especially the connection to the Internet.
For example, Nvidia’s board, besides using an SMK, can also be configured by connecting a PC by
USB. But it requires also moving some jumpers on the board and setting up the SSH connection.
Again, in the perspective to configure the device in several places, with people with basic IT skills,
those methods are not recommended.

To our knowledge, no work to configure a system using an RPi via a smartphone application
has ever been presented.

6.2 Contribution

We created a robot to serve as a link for people in their smart homes. Yokobo was designed with
compact size (HxLxW: 33x36x24 cm), therefore, we used an SBC for the central architecture.
For our prototype, we selected the RPi because it is easy to use and customize, is versatile, and
has a low cost. We described the creation process of Yokobo in chapter 4. In order to incorporate
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Figure 6.1: Structure of the message sent via Bluetooth

the robot into the users’ smart home, we need a simple configuration. Indeed, the purpose of
Yokobo is to be used at home and not in a lab setting, and during the experiments, Yokobo will
be moved to several houses, and then configured several times. For those reasons, an easy way of
configuration was required.

Hence, we propose a solution to configure the RPi thanks to a smartphone application connected
by Bluetooth with a specific protocol. The Raspberry Pi configuration with a smartphone on
Bluetooth is a first to the best of our knowledge, and because it is a popular tool for prototyping,
we hope our work can be useful for the community. Moreover, even if the proposed method is done
on an RPi, it is not strongly linked to it. Indeed, our method could be used with SBCs (or even
normal computers) with a Linux architecture and Bluetooth capability. Finally, we propose also
a user study with the System Usability Scale (SUS) [70] and behavioural analysis to validate our
solution.

6.3 Design of the Configuration Process

The configuration process, which consists of connecting the RPi to the home network and linking
the weather station, is composed of 2 parts : (1) an application for smartphones; (2) some scripts
on the RPi. The configuration is done following the chart presented in Fig. 6.2. It is composed
of several steps done alternately on each device, and this is done by exchanging messages via
Bluetooth. Those messages are using our original protocol described in Fig. 6.1. First, a byte
corresponding to the required function ({0 = close the connection, 1 = Wi-Fi configuration and
2 = weather station configuration), then comes the data. The first byte indicates the size (in
byte) of the following data (hence, the max size of the data is 255 chars), and then comes the data
per se. Next comes another bloc of data, with the size first and after the data, etc.

6.3.1 On the Raspberry Pi

The RPi configuration program is split into two parts. First, a master script in Python calls the
other scripts and lights Yokobo during the configuration (see Fig. 6.2). It also waits for the user
to push the Bluetooth button to run the next part. This script is launched on the boot of the RPi
thanks to systemd. Second, a script in Node.js that achieves the Bluetooth connection using the
BLE protocol (Bluetooth Low Energy). That script’s task is to receive the application’s messages
and replies; according to the function received, the script does a different task.

When the function is 1 Wi-Fi , the script uses the credentials sent by the application and
sets up the connection with the Network Manager [187]; since the default method using the WPA
supplicant has difficulties setting up the connection through the command line without a reboot of
the system. The local IP address of Yokobo is sent back to the application as an acknowledgement.

When the function is |2 Weather Station , we use the pyatmo library [188] (in Python) to
deal with the OAuth 2.0 protocol used by the weather station [189]. Thanks to this protocol,
the Resource Owner (the user) can let the Client (third-party API, here, our app) access the
data/services of the Provider (here, Netatmo). Hence, the configuration occurs in two phases:

1. First, an URL is generated to approve the connection. The user has to log in to give their
consent.

2. Secondly, a redirect URL is created. It is used to generate the token. This token grants
access to the weather station data without keeping the user’s credentials.

As an acknowledgement of the linkage, the current temperature is sent back to the app, see
Fig. 6.3d.
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Pushing the Bluetooth button

B\ /4
- S

Waiting for the button to be pushed
Being configured

Configuration mode for 10 min ~\ e
On the application e N On Yokobo
1 Connection to Yokobo Open the Bluetooth connection 2
3 Send the WIFI credentials holiadid Configure the WIFI network 4
5 Request the URL for the WS Request the URL to Netatmo 6
(D)
7 Login to the Netatmo account (D) Download the token 8
9 Close the connection START YOKOBO \/

Configured and ready to be used

Figure 6.2: Process of the first configuration

Let us see an example of a message that the program on the RPi can receive:

. PYTHON: Waiting for msg

> value == [J[JSSID[JPASSWORD[JWPA-PSK[J1[]JP

s Client connected to: tcp://127.0.0.1:10000
v [

5 'updateWifi.py',

6 'SSID',

7 '"PASSWORD ',

8 'WPA-PSK',

0 1,
10 IJP'

11 ]
1> EchoCharacteristic - onReadRequest: value = 192.168.11.31/1

The second line corresponds to the command received by the RPi, and the [] represents the
replacement character because it is not displayable. Indeed, because of our protocol, the first
character and the one before each block of data is just a number and then is not necessarily a
visible character. For example, the character before SSID should be 4 (the length of the word
“SSID”), and if we look at the ASCII' character set (Table 6.2) we can see it correspond to EOT
(End of Transmission), that cannot be displayed. But it has no impact on the protocol since those
bytes are not read as characters but numbers.

Then, in green is printed the reply of the program on the RPi. One can see it has correctly
understood the function ' 1 Wi-Fi by calling the appropriate file and then sending each parameter.
The last line corresponds to the reply that will be sent to the application, with here, the IP address
of Yokobo and 1 which means it is connected to the Internet.

L American Standard Code for Information Interchange
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Table 6.2: The ASCII character set, the dashed boxes correspond to unprintable characters

_ J ol s l2]sfefs]efr]eslof[nfefofo]e]r]|
on | DL | (s |t | (o] | (oo | v | D | Con ] | (o] | Do) | (o] | [vr] | O | T | o] (s
1 || LB} | (oG] | [o62] | [0Ga] | (oca) | [iak | s | [E18)} | (A, | (mn] | [suB)] | [Bsc] | s | o5 | (s | (US,
2x || ISP} | ! " # $ % & ) ( ) * + , - /
3x 0 1 2 3 4 5 6 7 8 9 5 < = > ?
4x Q A B C D E F G H I J K L M N 0
5x P Q R S T U v W X Y z [ \ ] - -
6x ¢ a b c d e f g h i j k 1 m n o

ro- 7
7x P q r s t u \4 w x y z { | } ~ | 'DEL!

6.3.2 On the Smartphone

We decided to have the minimum step to make it simple for the user, taking as inspiration the
three-click rule. This rule was first made for websites and stipulates that the user will get bored if
the information is more than three clicks away from the home page. Even if Jiménez et al. showed
that it is less true in the case of smartphones, they added that “the longer it took to browse a
website, the harder the experience [is| for the users.” [190]. Hence, we did the process in 3 steps
with a few operations:

1. The connection to Yokobo with Bluetooth. The user does it by pushing the Bluetooth
button on the robot and selecting Yokobo on the list of devices discovered by the app, see
Fig. 6.3a.

2. The Wi-Fi credential input. The user selects their Wi-Fi name and enters the password,
see Fig. 6.3b.

3. The weather station linkage. The user has to log in to the Netatmo website in an embed-
ded web browser, see Fig. 6.3c.

The app sets up the Bluetooth connection when the RPi is discoverable. Then it creates the
messages with all the information (credentials or URL) and sends them to the RPi.

When the configuration is finished, the application can display some information to the user on
a different screen (see Fig. 6.3¢); and the developer can have more detailed ones. We use the NEP
framework [110] for communication between the different scripts in Yokobo, using the publisher-
subscriber communication pattern. The application has to subscribe to appropriate topics to
get the raw data, such as the temperature, humidity level, presence of a person (from ultrasonic
sensors), body point (from the camera)... It allows the user to have an inner understanding of
Yokobo or to know some information at a distance, within the limit of the local area network.

The benefice for the developers is also significant since one can see the inner data of Yokobo.
It allows them to check if everything is working fine and to understand the situation in case of a
problem. The data are displayed in a user-friendly format, and it avoids the need to use a computer
to do simple checks. Especially during the first configuration of Yokobo, to check if everything is
working fine. This information is only accessible from the user’s local network and is not available
on the Internet for privacy reasons.

6.4 Design of the Application

The application is designed for Android and uses the language Kotlin which became in 2019 the new
official language to develop Android applications. The application is using the MVC architecture,
in order to have a better-built app by separating the data from the way to display them, see
Figure 6.4. By doing so, the same model can be used by different controllers to access the same
data. Moreover, if the representation of data in the memory has changed, the core (i.e. the
controller) does not need to be modified, only the access to the data (the model). Finally, several
views could be used, to adapt, for example, to a device with a big screen (e.g. a tablet).
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Figure 6.3: Screens of the application, that displays: (a) the instructions to pair the smartphone to the
robot. (b) the instructions to enter the Wi-Fi credentials. (c) the instructions to link the weather station.
(d) the current temperature to confirm the success of the configuration. (e) some data from Yokobo’s
sensors or the weather station.
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Figure 6.4: Schematic diagram of the MVC architecture
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6.5 Experimental Tests, Results and Discussion

The research questions that guided the experiment are:

Q1 Is the developed configuration method easy to use, even by people with little
knowledge about Yokobo?

Q2 Can the users manage to configure the RPi solely with a smartphone?

One way to answer the first question is to use the SUS developed by Brooke J. (q.v. sec-
tion 2.2.8). Hence, we conducted a user study in the lab to check the usability of the configuration
process, see Fig. 6.5. The experimental protocol is as follows: first, we explained to the participants
the goal of the experiment and asked them to follow the instruction of the application (in English)
to execute a complete configuration of the robot, i.e. connecting the RPi to the Wi-Fi network
and linking the weather station. Then, the researchers analysed the behaviour of the participants
while they are using the application. When they finished the configuration, we asked them to fill
out the SUS questionnaire, to which we added three custom questions. The custom questions’
answers consist of a 5-value Likert scale. See the results in Table 6.3 and 6.4.

The experiment involved 11 participants (8/3 m/f; 27/11 u/o years old; 73% Japanese people).
According to [191], it is possible to retrieve 80% of the usability problems with as few as five
users, so with 11 participants, we expect a very good understanding of possible usability issues.
To reply to Q1, we use the SUS tool, which gives a 0-100 rating about the system’s usability
thanks to 10 questions, with positive (odd questions) and negative (even ones) questions. The
score of our system is 69.77/100, which is above the SUS average score (68) [70], meaning our
systems has a close to good usability [192]. We can also compare it to famous applications such as
Facebook, which obtain a score of 71.39 [193], which is close to our app, considering that Facebook
is a commercial product. We can also notice that the first question (I think I would like to use
this system frequently) can also decrease the score in our case. Indeed, users are not expected to
configure their devices frequently. We can also see that most participants are strongly familiar with
smartphones (4.36/5). However, they are less familiar with smart devices (smartwatches, vocal
assistants...) or robots (score closer to 3/5). Then, smartphones are a good tool to use something
that is familiar to the user and makes it easier to apprehend.

We can see from Table 6.4 that all participants managed to configure Yokobo without help in
a time much shorter (less than 3 min) than the planned time (10 min). Answering Q2, it confirms
that our solution is robust and fulfils its goal: configuring an RPi with a smartphone, without
SMK. From the behavioural analysis, we can point out some other elements. First, most of the
participants were surprised when the configuration ended, that it is already finished. To address
this problem, we can use the recommendations of designers in UX, by indicating the list of the
steps [194]. Nevertheless, it confirms the choice discussed in section 6.3.2 of having a few steps. The
user did not get bored by the configuration process. Second, one participant took too much time
to read the first screen and did not push the Bluetooth button on the robot in time, and reached
the scanning timeout. S/he took some time to understand s/he had to click on the retry button
to rerun a scan. A solution to this problem would be to use less text and more pictures, to make
clearer and faster-to-read instructions. Third, since we rely on external services, the configuration
timer has to be long enough, even if the participants usually finish quicker.

Lastly, we tested our solution mostly with young people, but since smartphones are a well-
known tool as discussed in 6.1.2, and our target is young retired people (around 55-65 y.o.), we
can expect similar results.
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Figure 6.5: Experimental setup

Table 6.3: SUS results with 3 custom questions. Scores from Strongly Disagree (1) to Strongly Agree (5).
The positive questions are in bold.

Questions 1 o
1. I think I would like to use this system frequently 3.27  0.90
2. I found the system unnecessarily complex 2.64 1.29
3. I thought the system was easy to use 4.27 1.01

4. T think I would need the support of a technical person to be able to use 2.27 1.35

% this system

5. I found the various functions in this system were well integrated 3.36 0.81
6. I thought there was too much inconsistency in this system 2.00 1.00
7. I would imagine that most people would learn to use this system 4.64 0.50
very quickly
8. I found the system very cumbersome to use 1.82  0.60
9. I felt very confident using the system 3.91 0.83
10. I need to learn a lot of things before I could get going with this system 2.82 1.33

g I am familiar to use smartphone 4.36  0.92

% I am familiar to use robots 3.18 1.40

5 I am familiar to use smart devices 3.45  1.29

Table 6.4: Result of the behavioural analysis

Participants managing to finish 100%

Finishing time Less than 180 s

Remarks:

— Most participants were surprised when they reached the end of the process.

— One participant took too much time to read the first screen and press the Bluetooth
button, then the app searching time ends (10 s) and s/he had to push on the retry button
to start scanning again. But this participant took more time to understand it.

— Some participants had to wait longer to get the acknowledgement to connect to the weather
station.
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Summary

— To integrate Yokobo smoothly into the home, we developed a smartphone
application to set up the RPi remotely without connecting any devices.

— We developed our original protocol to exchange messages between the robot
: and the phone.

— We proved the usability with a user study.

— Achievement: Siméon Capy, Enrique Coronado, Pablo Osorio, Shohei Ha-
gane, Dominique Deuff, and Gentiane Venture. Integration of a presence robot
in a smart home. International Conference on Computer, Control and Robotics
(ICCCR) 2023, Shanghai, China, (accepted) [3].
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Chapter 7

How Can We Have Long Term
Interactions With Robots?

will be to push further the interactivity of the robot with the user. Yokobo has the aim to

interact for a long time with people, on a daily basis, then a kind of special relationship
has to be built. And one thing that makes the interactions between humans different from HRI
is the unpredictability, the spontaneity. We can generally detect a pattern in the reaction of the
robot, that follows a specific algorithm. It is the case of Yokobo, where all its interactions are hard
coded: if the temperature is like that do that, otherwise do this. The amount of different parameters
is what makes the pattern difficult to discover for the user. If we want the users to enjoy Yokobo,
and get over the novelty effect, they have to be curious about it: how will it react today?

In this chapter, we will try to add some unpredictability to Yokobo’s behaviour by applying
the principle of cognitive robotics. Yokobo will learn from its interactions with the user to know
what is the best reaction to achieve to have a positive relationship with his master. It will first
create a representation of the world that will help him to predict what could be the future, and
then find the best action to achieve, and learn from it.

gl FTER creating Yokobo and developed the first algorithm described in chapter 4, the goal

Source code
0 https://github.com/GVLaboratory/bewoda

The source code of the algorithm presented in section 7.2.

7.1 Literature Review

7.1.1 Creating a Representation of the World

If we have agents that are able to understand the world around them, ie their environment, they
could adapt their behaviours and then evolve naturally [195]. The idea of reasoning under uncer-
tainty and finding casual relationships takes this notion even further. The goal is for non-biological
agents to develop their own way to represent the world. One can cite the work of Ellis et al. [196]
show that those systems are not static but can adapt, even to symbolic tasks. With a Bayesian
approach, the agent used the concepts learnt before to create relationships and then uses them
to extrapolate new generalisations that the model never saw before. Thus, it can generate new
symbolic mappings that are interpretable and transferrable to new tasks while still growing scala-
bility and flexibility with experience. The two-step cycle of the wake and sleep program learning
of Ellis et al. allows the agent to create new hypotheses, test its program and then create a new
one, similar to humans that are consolidating their memories and daily experiences while sleeping.
Similarly, de Avila Belbute-Peres et al. [197] introduce a differentiable physics engine that can be
integrated into any learning model to determine the laws ruling the world surrounding the agent.
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Through a data-driven and expertise model, they can represent in a reduced space the physics
foundation for a variety of tasks in a robot’s task space. Thereby, thanks to this model, the robot
can perform its tasks efficiently without needing previous expert knowledge. Even if those two
examples are different in their objectives, they show the utility of environment understanding and
then using it to achieve the agent tasks.

7.1.2 Creating Adaptable Actions

Even if the agent has created its own reasoning about the world, it would still need to have
adaptability in its own actions or expressions. One can cite Reinforcement Learning (RL) which is
a common tool from the last decades, that has the capability to adapt to task-specific approaches,
either from simulation or the real world. Now, with a dynamic setting, robots can learn to succeed
in various tasks simultaneously by themselves, Kulkarni et al. [198] and Silver et al. [199] provide
a set of tools to exploit RL algorithms. In [198], they use a Deep Q-Learning algorithm, with
different temporal scales, to solve tasks posed by the environment; the exploration and adaptation
over time are set as intrinsic behaviours. While in [199] and [200], by using operator knowledge,
sequential representation of tasks in motion planning and the symbolic links of the task, their
algorithm can infer the correct transition clauses over time that a robot would need to succeed in
different tasks. Furthermore, this algorithm can infer the correct action for any given environment.
By mixing these approaches with the casual understanding described before, the agent is robust
enough to act in its world and develop a proper plan of action, evolve over time and create links
about what effect its actions have on its world.

7.1.3 Intention estimation

Yokobo will have to estimate the next action of the user in order to find the best action to achieve
like a human adapts their own behaviours to what s/he expects from their listener. The intention
estimation is a domain that is important in autonomous driving regarding pedestrians’ and cyclists’
(P&C) avoidance. Indeed the autonomous car has to anticipate the actions of P&Cs if it wants to
stop in time. Then we can see how it is achieved there, and adapt the algorithm used for Yokobo.

The behaviour of P&Cs is harder to predict, as they have the tendency to less follow the rules,
which forces AVs to estimate the action of P&Cs, like a human driver, will do [201, 202, 203].
Another point is the difference between each country regarding traffic code and the culture-related
behaviour of each person. Then, even if some international treaties exist to standardise the rules,
e. g. the Vienna Convention on Road Signs and Signals, not all countries ratified it, notably the
USA or Japan. Apart from the driving side, signs and crossroad design can vary; in addition, the
way the law punishes some misbehaviour of P&Cs could have an impact on them. For example,
Hell et al. showed that the presence of a Pedestrian Flashing Green light (PFG) has an impact on
the behaviour of Japanese pedestrian speed, contrary to their German counterpart [204].

Then, we achieve a systematic review of the current literature about the intention estimation
for pedestrians and cyclists for autonomous driving.

a) Methodology

We followed the guidelines of systematic reviews described in [205, 206, 207].

Research question The main focus of this article is to analyse the algorithms and sensors used
in recent research to perform P&C intention estimation, for the purpose of autonomous driving.

Search process The main concepts used to compose the search string are intention estimation,
movement prediction, pedestrian and cyclist. Then, we define the search string as (‘Pedestrian’ OR
‘Cyclist’) AND (‘intention estimation’ OR ‘movement prediction’). We use this string to search
potential articles in relevant digital databases (IEEE Xplore, Science Direct, ACM digital library,
Springer Link, MDPI and Web of Science). The systematic search performed includes publications
from the last 10 years, until February 2022. The number of papers after the process is 197.
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Figure 7.1: Process of the search strategy

Inclusion and exclusion criteria We considered the following inclusion criterion: Papers that
propose a solution to estimate cyclist and pedestrian intention estimation by relying, at least, on
one vehicle sensor. We have also included 4 articles that the search did not find and that experts
recommended: [208, 209, 210, 211].

We then applied the following exclusion criterion : (i) if the article is not in English. (ii) the
paper is not accessible. (iii) the study is only doing detection of the P&C.

Selection of papers The summary of the methodology is presented in Fig. 7.1. A total of 197
articles were found by the search engines. We then applied the following steps: Step 1: we skimmed
the list of off-topic articles after reading the title and abstract. The list was reduced to 41 papers.
Step 2: we applied the inclusion criterion after reading the articles. After the application of it, the
number of fetched papers is 22. Some articles were not selected because the solutions used external
cameras (such as UAVs or traffic CCTVs), or pedestrian-embedded sensors. We can also mention
the paper [202] that is not proposing a technical solution but provides guidelines to achieve the
intention estimation for cyclists. Step 3: we eliminated 6 papers, one because it was written in
Spanish, one was doing only detection of the pedestrian, and the 4 others were not accessible. The
final list counts 20 articles, with the 4 added articles, see Table 7.1.

b) Results

There are two common outputs for the intention estimation: compute the Crossing/Not Crossing
probability (P[C/NC1) or estimate the trajectory of the P&C. For cyclists, the most common task
is trajectory prediction. Indeed, cyclists can be roadway users as well and will not cross the road
like a pedestrian. In our case, with Yokobo, the probability of crossing would have no sense, or
even if it is adapted. Indeed, we do not have a binary option. Then we will look for the results
with a trajectory prediction output.

Clues Some cues are essential to achieve a good estimation, but most of them are similar between
pedestrians and cyclists. Then, [212] pointed out that the orientation towards the road is a key
point regarding the intention estimation. The gaze and the head orientation as well, and [213]
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Table 7.1: Comparison of the studies to estimate pedestrians/cyclists’ intention. The detail of the acronyms is given in the List of Acronyms section. P: pedestrian;
C: cyclist; V: vehicle. When the word and is used to describe the method, it means the authors developed several algorithms to compare them; the sign + is used to

describe the several components of the same algorithm. P[C/NC| means probability of crossing/not crossing.

Study | P/C/V | Sensor Method Output Dataset Remarks
Rasouli et al. (2019) [218] P Video RNN encoders-decoders Trajectory est. PIE Creation of the dataset
VS P[C/NC]
(LSTM)
Volz et al. (2016) [222 P Lidar CNN (LSTM) and DNN P[C/NC self Focusing on crosswalk
Wu et al. (2021) [214 P Video Extend TPB with MLP + | P[C/NC PIE
RNN
Hashimoto et al. (2015) [223] P \T/Eiseo DBN P[C/NC] self Focusing on crosswalk; TLS is
set manually
Alvarez et al. (2020) [219] p 3/]% video Stacked RNN (GRU) P[C/NC] PIE Tested with real vehicle
Future .
Sun et al. (2019) [224] P Video CGAN  (LSTM  encoders- | position Daimler [225]
L Context [226]
decoders) estimation
Stolz et al. (2018) [220] C Radar Hough transformation and | DoM self
RANSAC
Girase et al. (2021) [227] | P/C/V V.ldeo CVAE -+ Scene graph + GRU TraJec.tory est.; LOKI Creation of the dataset
Lidar Intention
Kataoka et al. (2018) [228] p Video Convnet + DeCAF + SVM P[C/NC]| Eg;%LB Creation of the datasets
. OpenDS- . .
Muscholl et al. (2021) [215] P Video DBN P[C/NC]| OTS2 Focus of the interaction be-
tween 2 pedestrians across the
street; Creation of the dataset
JAAD [230]
Poibrenski et al. (2020) [229] P Video CVAE + RNN Trajectory est. | ETH
UCY
NuScenes [231]
Kalatian and Farooq (2022) [216] P V.ldeo RNN (Aux-LSTM) Trajectory est. Lyft [232] Tested with virtual environ-
Lidar Waymo [233]
ment as well
PIE
Kooij et al. (2019) [217 pP/C 3D video | DBN (SLDS) Trajectory est. | Context
Ferguson et al. (2015) [234 P Lidar Changepoint-DPGP Trajectory est. | self Tested with rover
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Table 7.1 Continued: Comparison of the studies to estimate pedestrians/cyclists’ intention

Video
Lidar Trajectory est.
Wu et al. (2019) [221] P IMU DBN + DSF P[C/NC] self

VS
Video Future

Kotseruba et al. (2020) [212] p Vs RNN encoder-decoder (GRU) | position PIE

estimation
) . Faster RONN (P) P[C/NC] (P) | JAAD (P) .
Fang and Lopez (2019) [208] p/C Video Mask R-CNN (C) } +RF [Arm pos] (C) | CASR (C) Creation of CASR
Saleh et al. (2018) [209] C Video RNN (U- and B-LSTM) Trajectory est. | CTD [235]
Schulz and Stiefelhagen (2015) [210] P 3/% video | 1 phoRp P[C/NC] Daimler
Mggelmose et al. (2015) [211] P \éllglgo Munkres + IPM Trajectory est. | self Use the GPS to know if P. en-

ters hazardous zone
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Figure 7.2: General architecture of the proposed solution.

mention it as well for the cyclists. Those parameters could also be valuable in the case of Yokobo,
with as well the body points. Five studies are explicitly using the head orientation of the P&C
to determine their intention [214, 215, 216, 217, 210]. Five additional studies check the body
posture/orientation [218, 219, 220, 221, 208]. We cannot notice any correlation with the output
of each methodology, studies looking for both, P[C'/NC] and trajectory estimation, can use this
data.

Sensors used Using video is the most common input used with 85% of the studies using it, but
less than half (8) solely rely on it. They can complete either with a lidar (3), using the vehicle
speed (5) or GPS (1). In addition, the solution of [221] is the most complete by using the data
of 4 different sensors. Finally, one can notice that three solutions solely rely on remote sensing
methods (lidar or radar). Since Yokobo only use a camera, we will focus on the studies using that
input.

The methods One of the first steps of all of those methods is to identify the P&C, that we are
already doing with Yokobo with the HPEA.

About half of the studied methods are using RNN as the main method to achieve intention
recognition. As mentioned by [216], the high correlation, temporally and spatially, of the pedes-
trian pattern makes RNN a good candidate. Indeed, they are good to deal with trajectories and
dynamical systems [236]. The way to achieve the network is mostly using LSTM with some vari-
ation in the application since the network needs to remember previous states to deal with the
trajectory.

The other common method is to use a DBN. They are an extension of Bayesian networks, made
for dynamic systems. They can determine the probability for a specific event to happen, according
to its evolution through time. That makes it suitable to obtain the probability of the event crossing
to happen according to the evolution of the pedestrian through time.

7.2 BeWoDa’s Architecture

We propose an architecture called Behaviours from World Data (BeWoDa) to adapt the behaviours
of the robot according to the world’s data and learn from them. The goal is to find the best action
to achieve according to the current state of the world. This architecture is made for Yokobo, but
is not limited to it, and can be adapted according to the input and output of the system.

The general architecture is presented in Figure 7.2, and each block will be explained in the next
subsections.
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Table 7.3: The state space of the environment. The classes help to reduce the complexity of the problem.
Hence the domain size of the Bayesian network decreases from 102 to 800,000.

Data Class Meaning
Temperature (inside/outside) {<15;<25;<70}°C {cold ; warm ; hot}
Humidity (inside/outside) {<30;<50; <100} % {dry ; normal ; humid}
Atmospheric pressure {< 1015 ; > 1015} hPa {low-pressure ; anticyclone}
COz concentration {< 400 ; <1000 ; < 1200} ppm {good ; medium ; bad}
Time {0-6 ; 6-12; 12-18 ; 18-24 } h  {night ; morning ; afternoon ; evening}

7.2.1 Inputs

At each time t Yokobo reads the state of the world s, (t) which is divided into 3 different states:

State of the environment s.(¢): it includes the data of the weather station (temperature in-
/out, humidity in/out, atmospheric pressure and COs level). In order to simplify the problem
by reducing the size of the networks, the data will be discretised into classes. The networks
have to run on the RPi of Yokobo, then we need to be efficient. Indeed, the behaviour of
Yokobo does not need to be really different for each degree or pascal. See Table 7.3 for the
definition of the classes.

State of the robot s, (t): it represents the PAD of the robot calculated in the Robot state block,
see section 7.2.5 for more details.

State of the human s;(t): represent the user. It is divided into two states. With speme) for
the emotion (neutral, happy, sad, surprise, or anger) and s,[gp] for the body position of the
user. Both of them are given by the OpenVINO toolkit [162].

7.2.2 Outputs

The actions a(t) that Yokobo can do are divided into two groups. First, the motors’ actions
Amotor(t) for the command of each motor M;_3 knowing that the position of the motor Mj is
linked with the position of Ms. To simplify the output of the RL, the algorithm will not have to
select a precise position in degree for each motor but instead decide to increase, decrease from a
step the position of the motor, or stay at the same position. Then, the number of different actions
is reduced from about 46.7 million (3603) to 27 (33).

The second group of action is the light s;;gn¢(t), it is composed of 4 components, one for
each colour (Red, Green and Blue) and one for the luminosity. Those values are a number from
0 to 255 (one byte). In order to simplify the output, a palette of 10 colours will be selected.
The algorithm will have to select a colour from that palette and then increases or decreases the
luminosity for a step, or keep the same one. Hence, the number of possible actions for the light is
30 (10 x 3). Table 7.4 shows the palettes of colour. They have been selected to correspond to the
seven traditional colours of the rainbow, plus pink, white and black (light off), hence 10.

The choice of the two steps has been made empirically, with 10° for the motors and 10 for the
luminosity. Table 7.5 sums up the output.

7.2.3 User’s Intention Estimation

The first blocks of the algorithm, in orange in Figure 7.2, will estimate the user’s intention, and
then use this when Yokobo will decide the action it will perform (in the green blocks). This
prediction is based on two points, on one hand, the emotion of the user and on the other hand
the position of the user. We based our analysis on the systematic literature review done for the
intention estimation for pedestrians.
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Table 7.4: The palette of colours of the LED. The way the colours are rendered by the LED strip is not
perfect, then the orange and yellow seem to be wrong but are rendered in the correct colour.

’ Colour \ Name RGB ‘
off 0 ; 0 ; 0
Red 255 0 ; 0
Orange 255 ; 55 ; 0
Yellow 255 ; 150 ; 15
Green 110 ; 230 ; 40

Cyan 0 ; 255 ; 255
Pink 255 ; 50 ; 160
Blue 0 ; 0 ; 255

Violet 120 ; 30 ; 250
White 265 ; 265 ; 255

Table 7.5: The actions space, are the output of the reinforcement learning algorithms to command the
motors and the LED of Yokobo.

Component Action Classes

Motor 1

Motor 2 {-10; 0; +10}° 27 classes
Motor 3

LED Red

LED Green 10-colour palette
LED Blue

LED Luminosity  {-10; 0 ; +10}

30 classes

a) Emotion Intention Estimation

This block’s objective is to find the intention of the user in the future, and then Yokobo will
be able to use this estimation to find the best behaviour for Yokobo. Since the Reinforcement
Learning algorithm (see section 7.2.4) is focusing on the user’s emotion as a reward, we will try to
guess the likelihood user’s emotion. Based on the literature review done on intention estimation
for pedestrians, we decided to use a Dynamic Bayesian Network (DBN). Bayesian Network (BN)
are a good tool to build the causal relationship between the variables [237], here we want to have
the relationship of the future user’s emotion between the weather data, Yokobo’s emotion and the
current user’s emotion.

Bayesian Network The BN is a probabilistic graphical model using a Directed Acyclic Graph
(DAG) to represent the association of variables, see the Figure 7.3. They are used to predict the
likelihood of a variable to happen according to the evidence, i.e. the value of the other variables
(but it is not required to know all of them). The network will return the probability. It follows
the joint probability function, given by equation 7.1.

Notations:

The probability function will be denoted as P() and the following simplification will be
used for the conjunction of several variables:

P(/\Xl:l‘l> :P(Xl:le/\XQZ.TQ/\.../\Xn:J}n)

g=l

= P(xh 7xn)
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P(4)

A 0.5

NED /\ A | PO

false | 0.50 B C false | 0.20
true | 0.10 true | 0.80
\ / B c |P(D)
D false | false | 0.00

false | true | 0.90
true | false | 0.90
true | true | 0.99

Figure 7.3: Example of a simple BN with four nodes V = {A, B,C, D} connected by arcs. The tables
are called CPTs and they store the probabilities of each node according to the parents. In this example
each node is Boolean, but they could have more states than just true and false, such as cold, warm, hot
for a temperature.

P(x1,...,xn) = HP(mi|parents(Xi)) (7.1)
i=1

I
o

P(zi|zi-1, ..., z1) (7.2)
1

<.
Il

Where X,, C V are the nodes of the networks. This is because, the BN follows the local
Markov property, meaning that a node is conditionally independent of its non-descendants given
its parents. To calculate the probability of a node, we will use the theorem of Bayes:

P(A|B) = w (7.3)

Let us say we want to know the probability of X7 = x1, then, using the theorem of Bayes, we
can calculate the probability according to the n — 1 parents node, we have:

P(xa, ..., xpn|z1) - P(21)
P(an ,an)
likelihood - prior

P(xl‘x%"wxn) = (74)

posterior = (7.5)

evidence

The evidence is what we know, the current states of the parents’ nodes of Xy, the prior is
the probability of the node X; to be in the state x;. Finally the likelihood, the probability of the
parents’ nodes to be in this state, knowing that X; = z1. All the probabilities, for each node, are
stored inside what is called the Conditional Probability Table (CPT), they are the probabilities of
the node for each state of its parents (if they are no parents, it is the probability of this node to
happen).

Dynamic Bayesian Network It is an adaptation of the BN to describe a dynamic system, the
network is not dynamic. It is simply the duplication (unrolling) of the same BN over a number of
steps we aim to predict. In our case, we will only predict one step in the future, then the network
will be composed of two slices: t and ¢ + 1.

The input of our network are the weather data (see Table 7.3), the user’s emotion (see the list
in Table 7.6) and the robot’s emotional state. For the latter, the PAD of the robot is converted
into an emotion, according to Table 7.8. The structure of the network is described and explained
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Figure 7.4: The Dynamic Bayesian Network used to map the causal relationship from the world’s data.
(a) to simplify the graph, the data from the weather station are grouped inside a node called W, but in the
real network, each weather node is independent. (b) represents the DBN, the prior states are, in addition
to the weather, the current hour (ho), the emotion of Yokobo (Yo, the PAD data are converted with the
same mapping using in 7.8), and the user’s emotion (Ep). Only the posterior of the user’s emotion (FE}) is
valuable in our case, then for simplification, the others (W, ht, Y2) are discarded. Finally, the evidence (St)
to map the probability between EI=! (the estimation of the future emotion) and ET=2 (the real future
emotion). The algorithm is looped with a period T' when a new set of data are read from the sensors.

in Figure 7.4. The network is following two time periods, one denoted with small ¢ representing
the DBN slices, the observation period. In our case, we only want to predict one step in the future,
then ¢ € {0;1}. The second one, with a capital T represents the sampling rate of the BeWoDa,
T € N. See Figure 7.5 for a visual explanation.

The initial probabilities for the priors (for T' = 0) are initialised
empirically and they will be updated while the algorithm is run-
ning. The temperatures, humidity, atmospheric pressure and COq TN
level are assumed to follow a normal distribution. Each class is ~ | @ 7P
equiprobable for the user’s and robot’s emotional state and time. [T
Concerning the weather data, the algorithm will update the mean
and standard deviation of the normal distribution from the last N
data. The goal is the have the most accurate probabilities, which
is why the past data are discarded since the data in the distant
past have little impact on the current weather. Concerning the emotion’s data (from Yokobo and
user), the past data have still some relevance. That is why we decided to use the opposite of the
arctan function, in order to give more weight to the close past data than the distant past one. The
cutoff point! (p.) can be set, as well as the weight of the distant past data (w,).

The DBN is developed using the PyAgrum? library.

Figure 7.6: The parameters of
the filter

Particle Filtering (Dynamic) Bayesian Networks implies knowing the CPTs for each variable,
thanks to a database. However, in our case, this is not possible to do, since the probability is
specific to the user, we cannot ask to train the model for each user. Then, we will use particle
filtering to build the parameters of the model over the time [195]. In our case, it will be used to
calculate the probability of the posterior (P(E;|Wy, he, Yo, Fo)). The filter will generate N random

1By analogy with the cutoff frequency of a filter
2https://pyagrum.readthedocs.io/en/1.4.0/
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Figure 7.5: Representation of the difference between the two periods of the algorithm. The hat (fl)
symbolises the estimation the algorithm is calculating on the future slice.

data (the particles) with the data from the sensors (the priors) and the sensor model (S;), and
from this sample, the CPTs of the posterior will be calculated. The sensor model S; is updated
during the next period T with the new data from the sensors.

b) Trajectory Estimation

The goal of this block is to estimate the next body position of the user (3;p)(t + 1)) from the
current position (sypp)(t)). For this preliminary work, we focused more on the user’s emotions
than the body position. Then, the body points will be reduced to one unique position (centre
of the hip), and then the trajectory will be approximated as a linear function using the two last
positions. This hypothesis is relevant since the people are mostly doing sidewalk movements. We
will also consider the user’s velocity as constant because the place of Yokobo is at the entrance,
a place that is generally narrow. Then, the user will probably not run. Then, the future position
computation follows the equation 7.6.

1=a-Ty_1+0b
ytyizz-iz—‘i;_ j( Ty + dt )_(Itﬂ) (7.6)
dt = x4 — 2 a- (@ +dt)+ Y

7.2.4 Reinforcement learning algorithms

The RL algorithms observe the environment and read some states (s;) from it. From them, the
algorithm finds the best action (a;) to achieve and do it. Then, the environment replies with a
new state (s;41) and a reward (r¢). The algorithm uses these rewards to adapt its behaviour and
try to maximise the reward it can obtain from a state/action couple.

In our solution, we have two different RL algorithms, one for the motors and one for the light.
We decided to split it to reduce the number of different actions. Moreover, movement is the primary
way of communication, and the light supports it. The block for the light selects the colour based
on the generated motion.

The algorithms are developed using the PyTorch® and Gym?* libraries.

a) For the motor action

The goal of this part of the algorithm is to find the best movement for Yokobo according to the
estimation of the future user’s emotion (34eme|(t + 1)), the current Yokobo's state (s, (t)) and the
estimation of users’ intention (trajectory, 5,;pp)(t+1)), see Figure 7.2 and Table 7.6. The rewards
are the user’s emotions and the interaction’s duration. Yokobo will train to make the user happy
and avoid making him angry or sad. Moreover, it will try to have a long enough interaction, but
this reward will stop being used after 2min. Indeed, the goal of Yokobo is to interact with the
person, and then try to catch his/her attention. But it is not necessary to catch the user for hours.

Shttps://pytorch.org
4https://www.gymlibrary.dev
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Table 7.6: The states and actions for the reinforcement learning algorithm that create the trajectories of
Yokobo

States Values Combinations
Emotion ["neutral", "happy", "sad", "surprise", "anger"] 5
PAD {-2, -1, 0, 1, 2} 53 =125
Trajectory Minimum 2 points: (xA, yA)*(xB, yB) // 640%480 6402 % 480% ~ 949
Actions Values Combinations
Motors {-1, 0, 1} 33 =297

Q-Learning One of the most common algorithms for RL is called Q-Learning. To determine
the best action to achieve according to the current state, it uses a table (called Q-Table) to
store, for each (s,a) couple a Q-value. This value is calculated with the Bellmann equation (see
equation 7.7) [238] after the action (a;) has been done and the new state (s;y1) and reward (r;)
observed. It depends on several parameters, first the current value stored in the Q-Table for the
current state/action (Q(s;,a¢))®. Then, there is the learning rate (a € ]0;1]), the smaller «
is, and the longer it will take for the algorithm to learn. Finally, there is the maximum reward
that could be obtained according to the new state (s;y1): max, Q(siy1,a). It is weighted by the

v € ]0;1] discount factor, which gives more weight to the previous tries.

Q" (st,at) + Q(s¢,a8) + - (rt +y- max Q(st41,a) — Q(s4, at)> (7.7)

As said before, all those values are stored in the Q-Table. The algorithm will then select the
action a that maximises the @) value according to the current state s, and at this step, there is
a last parameter: the curiosity factor ¢ (from the e-greedy strategy) that is set to a small value.
The algorithm will select the action according to the @ value (100-¢)% of the time, but sometimes
will try another action randomly, by curiosity.

The Q-Table is a (N x N,) table, where Ny is the number of possible states, and N, is the
number of possible actions. If we want the algorithm to perform well, during its training phase
it has, at least, to try every (s;,a;) possible couple to calculate the Q-value. Hence, we can see a
limitation here when the table is big.

In our case, if we refer to Table 7.6, we can calculate the dimension of the Q-Table (Dg):

Ny, ~5-125-94-10°
~ 58.7-10'2

N, =27

Do = N, - N,
~ 58.7-10'% .27
~1.6-10*

That means the Q-Table contains about one and a half quadrillions cases, which is too much
and would take ages to complete it. That is why we decided to use a Deep Q-Learning approach
instead.

Deep Q-Learning The DQL [239] is similar to the vanilla one, albeit the Q-Table is replaced
by a Neural Network (NN). The input layer dimension is here the number of states and not the
number of possible states. In our case, we have the emotion (1 value), the PAD (3 values) and the
trajectory (4 values), hence the input dimension is 8. The output of the NN is the Q-value for
each possible action, in our case 27, see Figure 7.7. The number and size of the inner layers are
parameters that have to be tuned. Finally, the Bellmann equation (equation 7.7) is used here as
a loss function for the backpropagation. Because we are using a DQL algorithm, we do not need

5At the beginning, the Q-Table is initialised at a specific value, generally 0.
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Figure 7.7: Schematic diagram of the Neural Network (NN) of the Deep Q-Learning algorithm. The
inputs correspond to each component of the state (Emo for the emotion, P for the pleasure in PAD and
zp,ys for the coordinate of the second point of the trajectory) and the output to the Q-values of each
action Yokobo can do. The number and size of the inner layers (in yellow) is only for illustrative purpose.

anymore to reduce the dimension of the PAD by using only 5 values, then we can use as an input
a value from -1 to 1.

The algorithm is described in pseudocode in the appendix E (Alg. E.1 to E.4). It is divided
into several classes called by the main function which is looping to generate nbr_trial episodes®,
each episode is composed of several steps that are done as follow:

1. The DQL choose an action to perform according to the current state (Alg. E.1, £. 9).
2. Yokobo performs a step (Alg. E.3, ¢. 12),

3. The DQL is updated with the reward, new state and the done variable (Alg. E.1, £. 11).
4. If we are in a terminal state (done is true), then the current episode is stopped.

Regarding the done flag, it is set to true when the user stops the interaction with Yokobo, i.e
they are moving out of the frame. The core of the algorithm is done in the step function (Alg. E.3,
£. 12), where after doing the action provided by the DQL algorithm, it checks the result on the
world by observing it. Thanks to this observation, we can calculate the reward for the algorithm.
We decided on two main points for them, first, Yokobo should try to set the user in a good mood,
and second it should try to have a reasonable interaction time. For the first point, we check the
emotion of the user, if it is positive (i.e happy) the reward is positive as well, and vice versa for
a negative emotion (i.e. sad or angry). Concerning the interaction time, the goal of Yokobo is to
maximise it until a certain amount, as mentioned before, the goal of Yokobo is not to monopolise
the user. Then, in a specific time range, the reward will be positive, and outside it will be negative.

SFor training and test purpose. When the algorithm is implemented in the real robot, it will be an infinite loop
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Table 7.7: The reward of the DQL algorithm that commands the motors. If the interaction time is below
10s, we assume that the user was just passing in front of Yokobo. That is why we do not penalise it. A
continuous reward is added at each step, and a terminal one is only added at the terminal step.

| User’s emotion | neutral | happy | sad [ anger | surprise |
’ Continuous reward value H 0 \ 1 \ -1 \ -1 ] 0 ‘
| Time (in seconds) | <10[ <30 <60 <120 [ >120 |
Terminal reward value 0 -5 2 5 -5
Continuous reward value 0 0 1 1 0

This reward is calculated only when the done flag is true (indeed, the interaction time cannot be
calculated before the end of the interaction), however, a small positive reward is given at each step
if the interaction duration is inside the range. Table 7.7 sums up the different rewards and gives
their value.

b) For the light action

The algorithm to select the colour of the light use similar architecture to the one for the motors.
It is also a DQL algorithm, but the inputs-outputs and the rewards are different. The goal of this
block is to fit the light colour and luminosity (the brightness) with Yokobo’s emotional state (PAD,
see section 7.2.5). Then, the input is Yokobo’s PAD (three values) and the output is one colour
of the palette (see table 7.4) with the luminosity; the action was described in table 7.5. When the
action is selected, the colour is converted to an RGB tuple and the luminosity value is calculated.

For the training of this algorithm, we do not use the same rewards, based on the user’s reaction.
We want, here, the colours to match the current state of Yokobo. Thus, we used the literature on
psychology studies about the association by people between colours and emotions. First, we used
the book of Mehrabian, which created the PAD scale, to convert the PAD values to emotions [240].
As a first approach, we selected the 5 same emotions we got from the user, plus some additional
ones, see table 7.8. Then, based on the work of [241, 242, 243, 244], we mapped each emotion
to a colour, even if some difference of perception can appear for example because of cultural
background [245]. We used the colour that comes frequently for each emotion, as a first approach
(we will see in section 7.4 proposition of optimisation). Then, if the colour chosen by the algorithm
is the same as the one in the table, the reward is positive, otherwise negative. Moreover, to avoid
Yokobo to be flashing like a disco ball, a negative reward is given if the colour changes each step
from the last 5 steps, but also if the colour stayed the same. Finally, a positive reward is added if
the new colour is close to the previous one (by close, we mean in the colour spectrum, for example
from green to cyan, see Table 7.4). Table 7.9 sums up the rewards.

7.2.5 Robot state

The next block of code has to evaluate the current emotional state of Yokobo, and we decide to
use the PAD to put a number on it [240], it is a common tool in robotics to express the emotion
of a robot (q.v. section 2.2.6). In order to get the robot state, we decided to extract it from the
trajectory parameters like the velocity, acceleration or jerk of the generated motion from the
RL motor algorithm. We decided to use the movement of the end effector (i.e. Yokobo’s head) to
define the emotional state. Based on the work of Claret et al. [246] where they achieve the inverse
operation: getting the movement parameters from the PAD values. We decided to use the same
relations:

Pleasure (P) is inversely proportional to the jerk in the motion.
Arousal (A) is proportional to the kinematic energy of the motion.

Dominance (D) is linked to the gaze of the robot. Even if Yokobo does not have eyes, we used
the answers from the questionnaire. Indeed, most of the participants identified the apex as
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Table 7.8: The mapping table between emotion, PAD and colour. Based on [240, 241, 242, 243, 244],
except for neutral and curious emotions. For the first one, we decided to set it for the null PAD value,
with white which is a neutral colour. Regarding curiosity, we could not find any mapping with colour in
the literature. From non-scientific mapping, it came out that green and yellow are often associated with
this emotion. We selected green to have two different emotions for yellow, and two for green.

’ Emotion H P A D \ Colour ‘
angry -0.51  0.59 0.25 RED
bored -0.65 -0.62 -0.33 | WHITE
curious 0.22 0.62 -0.01 GREEN
elated 0.50 0.42 0.23 | YELLOW
hungry -0.44 0.14 -0.21 | ORANGE
loved 0.87 0.54 -0.18 PINK
sleepy 0.20 -0.70 -0.44 BLUE
violent -0.50 0.62 0.38 RED
sad -0.63 -0.27 -0.33 | VIOLET
happy 0.81 0.51 0.46 | YELLOW
surprised 0.40 0.67 -0.13 WHITE
fearful -0.64 0.60 -0.43 | VIOLET
relaxed 0.68 -0.46 0.06 | GREEN
neutral 0.00 0.00 0.00 WHITE

Table 7.9: The rewards of the DQL algorithm for the light

H Continuous reward ‘

The colour matches with the PAD 3
The colour does not match with the PAD -3
The new colour is close to the previous one 2
The colour has changed each step for the last 5 -1
The colour stayed same each step for the last 5 -2
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Figure 7.8 & Table 7.10: Reminder of the Denavit—Hartenberg parameters of Yokobo. In this chapter,
for simplification, a2 will be changed in a and d3 to d. P is located at the top of the head/bowl.

the head of Yokobo, and the vent as its eyes. Then we decided to use the position of the
head. If the position of motor 2 is low, the dominance will be high (Yokobo is looking
down) and vice versa.

a) Arousal

Concerning Arousal, we have the following relationship:

2
A=

= B —1 7.8
Ek,mam F ( )

With Ej the kinematic energy and Ej,max the maximum of the kinematic energy. This value
is calculated using the forward kinematic. The Figure 7.8 reminds the DH parameters. First, we
calculate the expression of the position of the end effector (P) in the world frame (Rg) thanks to
the transformation matrix. For simplification, in this chapter, C; = cos(6;) and S; = sin(6;).

VA5 =94, .14, 24, (7.9)
_Cl 0 Sl 0 CQ 0 —SQ (J,CQ 03 —53 0 0
o Sl 0 —Cl 0 SQ 0 C2 a5'2 . 53 Cg 0 0 (7 10)
10 1 0 O 0 -1 0 0 0 0 Cs d '
L0 0 0 1 0 0 0 1 0 0 0 1
[C1C5C5 — 8183 —C1Ce85 — C38; —C1C38, aC1Cqe —dC1S,
| Ci1S3 4+ C2C385,  C1C3 — (25153  —C35152 aCySq; —dS:S, (7.11)
o (3855 0 — 5953 CyC3 aS, +dC, ’
i 0 0 0 1
We can extract, from the top right of the matrix, the position of the end effector:
x aC102 - d6'152
y| =[aC251 —dSi5: (7.12)
z) 5 aSs + dCs Ro

—

Then, using the forward kinematic, we know that ¥ = J(6) -0 with J the Jacobian matrix and
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0; the parameters of the robot. The Jacobian matrix is defined as follows:

rdr Ox Ox
90, 90, 003
dy Oy Oy
J = %, 26, 6, (7.13)
0z 0z Oz
L0000, 063
_751((102 — dSQ) deng — 110152 0
= Cl(aC’g — dSQ) _d51C2 - a5152 0 (714)
L 0 GCQ - dSQ 0

We can calculate the velocity of Yokobo’s head:

Vg -5 (CLCQ — ng)t% — (d0102 + 0,0152).9.2
U= Uy = Cl (GCQ — dSQ)el — (dSlCQ -+ a5152)92 (715)
Vy P (CLCQ — d52)92

Ro

The maximum of the kinematic energy is defined by Ej mez = % ~m - ||¥]|?, the energy is

maximum when the velocity is maximum. We need to find which angular positions maximise the
velocity of the head. Concerning the angular velocity, we will use the maximum of the motor
indicated in the documentation”: ) = 234.27 rev/min (24.53rad-s~1).

— 2 2 2

Vinaz = 1([9111519)2( ( vi +v2 + vz) (7.16)
= Ienan (Q . \/(—a51+2 — d01+2)2 + (a01+2 — d51+2)2 + ((102 — dS2)2) (717)
~ max (Q-\/a2(1+(]22) + (14 S2) —2ad-0252) (7.18)

We can see that the maximum velocity of the end-effector is independent of the angle of the
first motor (61). Then, we need to find the angle 65 that maximises the velocity:

oV T
A =0y = — 7.19
(892 >[O;27r] ’ 2 ( )

Then, the maximum velocity is for 8, = 7/2, however, this position is physically unreachable
for Yokobo, since the amplitude of the second motor is limited between +0.31rad around 0 (for
02 = 0 the velocity is minimal, and the head is vertically aligned with the base). Due to the

eccentric of the third motor (a), the maximum is for §; = —0.31rad:
Vinaz = 2.65m-s~1 V0, and 6 = —0.31rad (7.20)
We can obtain the maximum energy with Fj maz = % -m - V2, The mass of the bowl is about
50 g, then:
Eymaz = 0.18J (7.21)

b) Dominance

To calculate the Dominance, we just need to shit the position of motor 2 in a [—1;1] scale when
the motor is at its minimum (looking up), the dominance is -1, otherwise to 1; then, we have:

B 9 MAX + MIN
T MAX — MIN 2 MAX — MIN

"It is the same for the three motors.

D (7.22)
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Table 7.11: The parameters of the two DQL algorithms.

| T DQL Motor | DQL Light |

Learning rate « 0.003 0.003
Discount factor ~ 0.9 0.9
Curiosity factor & 0.9 0.9
Number of hidden layers 2 2
Size of the hidden layers (256, 256) | (256, 256)

c) Pleasure

Like [246], we are using the jerk, but contrary to their project, we have to read it and not generate a
jerked motion. We could have done something similar to the Arousal by calculating J,,4., but that
would require complex calculation, and in addition, need the maximum acceleration and jerk of the
motors, which are not provided by the documentation. Then, we will define an arbitrary maximum
value of the jerk (1 m-s~2), and if a bigger value is found, it will become the new maximum value.
Thus, Yokobo, will adapt from the time. Then, the formula is similar to the Arousal, besides the
minus sign, since the Pleasure is inversely proportional to the jerk:

2

P=1- j (7.23)

Jmaz

7.3 Training of the algorithm

In this section, we will observe the result of BeWoDa in simulation, to see the movement of the
motors and the change of the colour. This simulation is done to check the viability of the algorithm.
Since BeWoDa is using the user’s reaction from Yokobo’s behaviour as input, we cannot use data
from recorded videos. Then, here we will generate fake data to evaluate the system, before testing
it in real conditions.

7.3.1 Foreword

The algorithm has a lot of parameters that can be tuned to optimise the result of the algorithm.
In addition to the rewards presented in Tables 7.7 and 7.9, we have also the parameters of the two
DQL that can be changed. By lack of time, the value has been selected empirically and described
in Table 7.6, the way those parameters are set is one of the future works.

Moreover, the terminal state of the algorithm is when the user stops the interaction with
Yokobo, in the simulation we decided to replace it with a finite number of steps: 300. Concerning
the number of episodes, it as been set to 500.

7.3.2 Data Generation

To train the algorithm before testing it on Yokobo, the data are manually generated. Concerning
the weather data, since the weather station updates the data only each 10 min we do not need to
generate a lot of data and try with different sets of data.

Regarding the user’s emotions, we will simulate them by generating randomly them. To avoid
the emotion changing at each step, the algorithm will keep the same emotion 70% of the time,
and if the emotion of Yokobo (given by the PAD) is one of the possible emotions of the emotion
recognition algorithm (see Table 7.3), then the user will take the same emotion 40% of the time,
to simulate empathy, see algorithm 7.1.

Algorithm 7.1: Generation of user’s emotion data

1 FUNCTION generateEmotion

2 input currentEmotion

3 output newEmotion

4

5 userPossibleEmotion ¢ ["neutral", "happy", "sad", "surprise", "anger"]
6
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Figure 7.9: The green band symbolises the position where the training algorithm will generate the user’s
position

7 newEmotion < currentEmotion

8

9 alea < generate random number between O and 1
10 IF alea < 0.3

11 newEmotion ¢— select a random emotion

12 END IF

13

14 alea < generate random number between O and 1
15 IF Yokobo.emotion in userPossibleEmotion AND alea < 0.4
16 newEmotion <— Yokobo.emotion

17 END IF

18 END FUNCTION

For the user’s position, the coordinate is also generated randomly. The horizontal position ()
is generated in the whole width of the screen (640 pixels, 480 px for the height), and the vertical
coordinate (y) is set on a band of 150 px around the central line of the screen, see Figure 7.9. This
constraint is done because the user will most likely remain on the depth, and then the y component
be quite constant. In addition, when a new point is generated (being in the green band), it will
randomly set in a square of 20 px size around the previous position. Again, we are assuming that
the user is not moving too fast.

7.3.3 Results and Discussions

The graphs of the Figures E.1 and E.2 shows the positions of the motors and the PAD of Yokobo
over the steps for different episodes, two episodes at the beginning, one at the middle, and the last
one. In addition, Figures E.3 and E.4 display moments of the animation of Yokobo for episodes 0
and 498, respectively. A 3D animation of the movements has also been made with Blender. The
angular position of each motor and the light colour and luminosity has been saved into a file, and
then it is read by Blender to animate Yokobo, see a screenshot on Figure 7.10.

We can see the evolution of Yokobo’s movement over time, while it is learning. In the beginning,
for episodes 0 and 10 (Figures E.la and E.1b), the movements are erratic and shaky with large
amplitude. But those movements are not suitable for Yokobo, because it should be a discreet
robject in one’s home. By doing huge movements, it will start to become noisy, moreover, it might
eject the objects located inside the bowl. After some episodes (see Figures E.l1c and E.1d), the
movement is smoother, and the motors stay in a close range. For example, in the 498th episode,
motor 3 mostly stays in a 30° range, while in the first episode, it is a 60° range.

Similar comments can be done for the PAD, especially for the Pleasure, which gets smoother
over time. Since the goal of Yokobo is to keep the user in a good mood, it is good that Yokobo
has a positive Pleasure (associated with good emotions); considering the movement of Yokobo gets
less shaky over time (the jerk decrease). One can also notice that Yokobo’s Arousal also stabilises
around —1, meaning that Yokobo’s end-effector velocity is far from the maximum one. Finally,
the Dominance follows the apex movement (Ms).

Concerning the light, following the rewards, after some episodes, Yokobo gets smoother tran-
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Figure 7.10: Screenshot of the animation generated by Blender. The 3D model of Yokobo is using the
second version.

sitions between each colour. In the beginning, the colours changes at each step (see Figure E.3),
making it hardly legible for the users. While the learning progresses, the transitions are more nat-
ural and the colours are staying close to the previous one (see Figure E.4). One can also mention
also that the RL for the light learns to match the colour with Yokobo’s emotion, indeed after 5
episodes more than 200/300 steps match colour and emotions (with a mean of 265 for the 500
episodes).

7.4 Future work and Improvement

As preliminary work, several upgrades could be done to the algorithm to enhance the interactions
better. The algorithm has been made for Yokobo, and some of the simplifications and assumptions
are suitable for it since its way of expression is more limited than, for example, an android robot.

First, we focused on the face emotional side of the user only and simplified considerably the
user’s position and posture. However, this information is useful, since emotion can also be trans-
mitted by body posture, as we saw in chapter 4. To integrate this part, we can take advantage of
the review done on pedestrian intention estimation and use similar technologies. One way would
be to estimate the future body posture of the user with an RNN algorithm, before sending it to
the RL algorithm. Moreover, another block could be added to translate the body posture into
emotion and use it in addition to the face one.

Second, we can improve the DBN by changing the particle filtering by the solution devel-
oped in [247]. They used instead Gaussian Particle Filtering (GPF) and improved it with kernel
smoothing. The GPF can be used for continuous approximation, instead of discrete one.

Third, concerning the PAD-to-colour blocks, we simply assigned a colour to each emotion
for the reward as a first try. However, as mentioned by [245], the perception of colour regarding
emotion is different regarding culture, and even in the same culture, the perception can be different
among people (q.v. the graph in [241] that do not have uniforms answer). Then, instead of using
strict mapping, we could use a gradient of colour for each emotion to add more flexibility. This
flexibility could be added to the palette of colour as well. We decided to use a palette instead of
selecting directly the R, G and B values to avoid non-visible change and to limit the number of
possible actions, but we could use a bigger palette to have a better association with the emotion.
In addition, we selected only 14 emotions from the PAD values, but [240] gives a list of 1518.

Fourth, the selection of the different parameters of the algorithms can be tuned to find the
best combination. In addition, we could also imagine using the rewards of the RL algorithms to
create different personalities for Yokobo. Indeed, we decided to avoid big changes in the light, but

8Even if most of them would not apply to Yokobo, but we could use a longer list
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we could have a more eccentric Yokobo that would not hesitate to be funky. On the other hand,
we could increase the value of the reward to make it calmer. Those reflections apply also to the
motion of Yokobo.

Last, of course, in addition to simulation, the algorithm has to be tested with Yokobo. Firstly,
with short interactions to test the technical viability of BeWoDa, before doing a long-term exper-
iment with people on daily-basis interaction. The technical test is important to see if the RPi
can manage the algorithm, otherwise, it could need some code improvement or translation from
Python to C++ in order to have better performance.

Summary

— Conception of an algorithm to create adaptative behaviours for long-term in-
teractions.

— Creation of a DBN to represent the causal relationship of the world’s data.

— Development of RL algorithms to command the robot actions.

— Achievement: Siméon Capy, Gentiane Venture, and Pongsathorn Raksin-
charoensak. Pedestrians and cyclists’ intention estimation for the purpose of
autonomous driving. International Journal of Automotive Engineering, 14(1):
10-19, 2023. doi: 10.20485/jsaeijae.14.1 10 [4].
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Conclusion

robots have been closer and closer to humans. Nowadays, they are common in factories or

warehouses, but still rare in homes, and lack social capabilities. With the aim to have robots
able to understand and use human social skills, we explored in this thesis some ways to develop
robotics systems closer to humans, and by using environmental data to adapt their behaviours.
Then, the users will have the feeling that the robot is part of their world if it changes its behaviour
because, for example, the weather is cold today, or if it becomes more comprehensive regarding
the user if this one is looking sad.

We first used a dual-arm industrial robot to do HRI at a fair. This application was the
opportunity to try those robots outside their usual environments: factories and laboratories. They
are generally isolated from humans for safety reasons, or, if they interact with them, require specific
training for the operator. In our project, the general public could interact with the robot without
prior training, through their emotions and body movements; and they enjoyed it. One can imagine
those kinds of applications in a shop, as a clerk, where the robot can understand if the client is OK
with his choice or not. The validation of our scenario in an open-to-public exhibition was essential
to have the opinion of people that are not familiar with robots, or who usually do not interact with
them.

After this preliminary work, where the interactions are fast and in an unfamiliar environment
for the user, we wanted to explore the impact of a robot on a daily basis, at home. Then, we
created a presence robot, called Yokobo. In addition to the body movements of the user, it also
uses the weather conditions to change its behaviour, and then it expresses the state of the house.
By doing so, it becomes more unpredictable for the users and then becomes less annoying with
time. Yokobo was made in the slow tech trend and then was to be “understand” over time, and
not after the first use. Moreover, as mentioned in the literature, only movement can still transmit
social cues, then Yokobo uses solely non-verbal behaviours as means of communication (movement
and light). We also developed and experimented with a new concept in HRI called HRHI where
the robot is bound between two persons, as a medium for communication. Yokobo has the aim
to be used for a long time in the user’s home, on a daily basis. Hence, we proved the technical
stability of Yokobo in our office, before the real experiment in people’s homes that is currently
taking place in France (second semester of 2022). We also proved that Yokobo can be used in more
environments than just at home.

S TUDYING HRI was the centre of this thesis, and since their appearance in the 20th century,

Researchers generally try their robot in a controlled environment, like a laboratory, and then,
they can adapt the parameters to their needs. But, since Yokobo has to be used at home, it
brings some constraints that we do not have in laboratories, and one of them is the configuration.
If social robots want to be part of the home, they have to be connected to the Internet, to take
advantage of it. Moreover, in the case of smart homes, the robot can use the data of other devices,
like Yokobo, or even command some of them. To be accepted by everyone, it should be simple,
and intuitive to use. Then, we proposed a new method to configure the RPi with a smartphone,
a device that is really common nowadays. We selected the RPi because it is a common tool for
prototyping or building projects at a low-cost, that would require a PC of small size, like a robot.
Unfortunately, the native configuration process of the RPi requires computing knowledge. We
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experimented with our method which was designed to have a minimum of steps, in our laboratory.
All of them managed to configure Yokobo successfully in less time than the configuration timeout,
proving the usability of our method.

Finally, to validate the relevance of our projects, we also developed several experimental pro-
tocols assembling tools from the literature to create questionnaires. We choose to validate our
solutions in the wild, with unscripted scenarios, as the general public would use social robots.
Indeed, they can have more natural, authentic and spontaneous interactions with the robots in
their daily environment (home/work) or without expecting it (in exhibitions), than in a controlled
environment by following a specific scenario. We hope that, in addition to the developed solution,
our experimental protocols could help future researchers to evaluate the HRI of their projects.

Ultimately, the goal of this thesis is to see how social robots can be improved to adapt their
behaviours according to their environment, and how people would perceive them. We summarised
the proposed solutions. We could prove their efficiency or usability during our experiments, the
participants enjoyed the scenario at IREX, or felt welcomed by Yokobo. The perception of the
users was positive. We demonstrated that social robots can share space with people and be used
without prior training from the users, the participants could use their prior knowledge of social
interaction. It confirms that the creation of such robots, with capacities for adaptation is a domain
that has a promising future, that needs more exploration.

8.1 Limitations

Social interactions are something that takes place on a long time basis, thus we do not become
instantaneously friends/enemies with people but after we have learnt to know each other. It is
similar to robots, if we want to evaluate how people perceive them, we need time. Even if the
experimentation was considered a long-term experiment, two weeks is still short to have a better
evaluation of the perception of the participants. It would have been interesting to evaluate Yokobo
over months and check at regular intervals the feeling of each participant. Such an experiment is
taking place now, but the results will be known later. It is also a good opportunity to evaluate the
acceptance of such robots in the home if people see them more as an intruder or a pet, or even a
friend.

Another important point that should be explored is cultural acceptance. During our experi-
ments, we did not have enough diversity in the participants, most of them being Japanese. We
can expect that Japanese, French, British, Brazilian... people will not react and perceive the social
robots in the same way. We can draw a parallel with human—human interactions, and the way
each culture is doing them is different.

8.2 Open Challenges and Future Works

We proposed new scenarios in the field of HRI to enhance them, by having adaptable behaviours.
However there is still a lot of work to do, and this was only one stone on the bridge that have been
started decades ago. We developed a solution that uses the person’s facial emotion to adapt the
robot’s behaviour, but that is just a first step. Indeed, humans can also transmit social cues with
body gestures [248, 249]!, then the robot should be able to understand them and adapt its own
behaviour. For example, if a person is angry by his gesture, the robot should try to calm him/her
down.

The understanding of the social language by the robot would be one condition of their spread
to the general public, people could get frustrated if they have to interact explicitly with them to
be understood. Another condition, that is an open challenge, is ethical acceptance. Do we really
want social robots wide-spreading? Is it beneficial for society? Those questions were not the main
goal of this thesis but should be taken into account when the robots will become smart enough to
be used, for example, as a companion.

11ike we saw for robots, in chapter 4
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Appendix A

(Questionnaires Scale

A.1 The Big Five questionnaire

1

-~ W

© » X

10.
11.
12.
13.
14.
15.

. Ilike to talk.

I like being busy.

I am healthy and active.

I don’t worry about many things.
I usually don’t get hurt (emotionally).
I rarely feel nervous.

I have a lot of imagination.

I am flexible.

I am curious.

I like to plan.

I work hard on issues.

I respect rules and promises.

I think from other’s perspectives.
I like to collaborate with others.

I like to communicate my feelings.

A.2 The SUS scale

1.

I think I would like to use this system frequently.
I found the system unnecessarily complex.

I thought the system was easy to use.

106

I think I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well integrated.
I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.
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8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I need to learn a lot of things before I could get going with this system.
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Appendix B

NEXTAGE OPEN Characteristics

All the data come from the online documentation available in [93].

B.1 Dimensions
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B.2 Specifications

Table B.1: Robot specifications

Degree of freedom

15 axes (6 for arms x 2, 2 for
neck, 1 for waist)

Axes configuration

Arms

Neck
Body

Shoulder Y - Shoulder P - El-
bow P - Wrist Y - Wrist P -
Wrist R

Neck Y ? Neck P

Waist Y

Payload (TCP)

1.5 kg (one arm)
3.0 kg (two arms)

Position repeatability?!

Within 0.5 sec

Positioning repeatability?!

Within 30 pm

Max speed of each axis

Waist Y: 110 deg/s
Neck Y: 150 deg/s
Neck P: 250 deg/s
Shoulder Y: 172 deg/s
Shoulder P: 133 deg/s
Elbow P: 215 deg/s
Wrist Y: 263 deg/s
Wrist P: 224 deg/s
Wrist R: 300 deg/s

Operating environment

Ambient operating tempera-
ture
Ambient operating humidity

In storage

0 to + 40 °C

20 to 80 % RH (no condensa-
tion shall occur)

Same as the operating envi-
ronment

Weight

29 kg

IThe test conditions are:

— Load applied to hands: 1.5 kg

— Position coordinate to be measured: (x,y, z) = (315, £100, 220) (+: Left arm, -: Right arm)

— Operation speed rated at 100%, 50% and 10%

— Number of measurements: 30 Error band: £30 pm
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Appendix C

Yokobo’s Hardware

C.1 Bill of Material

Component ‘ Ref. ‘ Qty ‘ Characteristics

Raspberry Pi 4B 2 §2G(?B(]E{j§\D/I;

Ultrasonic sensor 2 | HC-SR04

Wide angle camera - 1 | 5MP 1080p 720p

TRACO5V-6A PS1 1 | Vout: 5/£12Vdc 9 — 18V
dc, 40W 12 V dc

Resistance Rusb2 1| 100k 0.25W £5%

Power female socket Jpowerl 1 | DCJ250-20-B-K1-A

Power male plug - 1 | 5.0A 12.0 V 2.5mm 5.5mm

PCB  Terminal Blocks | Jarduinol, Ji2cl, Ji2¢c2, 5 | 2.54mm, 2 channels

(screw) J5V1, JrpiMainl

PCB Terminal Blocks fe- | Jmotl, Jswitchl 2 | 5.08mm 2 channels

male

PCB Termial Blocks male - 2 | 5.08mm 2 channels

Simple IDC connector fe- | - 4 | 2.54mm 3 channels

male 3 pins (LED+JIC)

Simple IDC connector male | Jledl, JIC pwml, 4 | 2.54mm 3 channels

3 pins (LED+JIC) JIC 101, JmotRelay1

Switch - 1 | SPST, On-Off

Fuse polyswitch Fmotl 1 | 2.5A 30V dc RUEF250

Condensator (Cinl) Cinl 1| 1uF 50V dc

Condensator (Cin2) Cin2 1 | 100 uF - 100V dc

Condensator (Cin3) Cin3 1 | 100nF - 50V dc

Diode Schottky Dmot1 1 | 6A, 400V

IDC connector (RPi) male | JrpiSensorl 1 | 2.54mm 40 channels (2x20)

RPI Ribbon + IDC - 1 | 40 Pin 20 cm, Female to Fe-
male

Simple IDC connector male | Jusl, Jus2 2 | 2.54mm 4 channels

4 pins (US)

Simple IDC connector fe- | - 4 | 2.54mm 4 channels

male 4 pins (US)

Fan pin Jfanl 2

Fan -

Relay - 1 | SRD-05VDC-SL-C

Fuse raspberry FrpiSensorl, FrpiMainl 2 | 3A, 32V ac/dc
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Simple IDC connector male | Jrfidl 1 | 2.54mm 8 channels

8 pins (RFID)

Simple IDC connector fe- | - 2 | 2.54mm 8 channels

male 8 pins (RFID)

Heatsink Raspberry Pi - 2

Ribbon cable - 1 | 16 pins 20.3 mm

LED strip - 1 | WS2812B

Ribbon camera - 1 | Raspberry Pi camera rib-
bon cable 50 cm

Intel compute stick 2 - 1

Motor driver - 1 | SMPS2DYNAMIXEL

Motor cables (serial cables) | - 1 | DYNAMIXEL 4P 240mm

Motor USB device (motor | - 1 | U2D2 INTL

command)

Dynamixel Motor 1| MX-28

Dynamixel Motor 1 | MX-64

Dynamixel Motor 1 | MX-106

Ethernet cable - 1|10 cm
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C.2 Final PCB C
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C.3 Final PCB Routing Diagram
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Appendix D

Questionnaires and Data of the
Technical Experiment

From the experiment described in Chapter 5.

D.1 Questionnaires

In this section the different questions asked with the three questionnaires (QS, QW1 and QW2)
are presented in the Tables D.1, D.2 and D.3. The questions for the first one (QS) are asked in
the future tense since the participants answer them before any interactions.
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Table D.1: Questions asked in QS, QW1 and QW2. The text in square brackets is added for this article
and was not present in the questionnaire.

Question Answer choice

Personal questions

Student ID* number

How old are you??2 number

What is your gender?? Female, Male, Prefer not to say
What is your nationality?? text

What is your level of knowledge about robots?? Not familiar (1) - Familiar (5)

I was involved in the first experiment

I already interact with Yokobo on my own
What are your knowledge about Yokobo?? I know how it works and already saw it

I only saw it

I don’t know about Yokobo

About Yokobo and its behaviour

How much Yokobo welcomed you? [Likert scale] Not at all (1) - I felt welcomed (5)
Did you see intelligence in Yokobo? [Likert scale] Not at all (1) - Totally (5)
Did you see life in Yokobo? [Likert scale] Not at all (1) - Totally (5)
Curious
Happy
What is your feeling about Yokobo? gri?ﬁsias tic
(1: not at all ; 5: totally [Likert scale]) Confusion
Friendly
Smart (1) Stupid (5)
Simple (1) Complicated (5)

Dynamic (1) Static (5)
Lifelike (1) Artificial (5)
Respounsive (1)  Slow (5)
Emotional (1)  Emotionless (5)

Yokobo is
o . : ) Useful (1) Useless (5)
[poszt.we adj. (1) (@) () (») (5) negative adj. - se- Familiar (1) Unknown (5)
mantic scale]
Desirable (1) Undesirable (5)
Cute (1) Ugly (5)

Modern (1) 0O1d (5)
Attractive (1)  Unattractive (5)
1 Yokobo [semantic scale] Like (1) - Dislike (5)

Design

Name with your word, in the next questions, the different parts of Yokobo.
Numbers 1 to 4 are pointing the whole part. Numbers 5 and 6 are pointing the holes.

How do you will call the mark 13 text
How do you will call the mark 23 text
How do you will call the mark 33 text
How do you will call the mark 43 text
How do you will call the mark 53 text
How do you will call the mark 63 text
Interactions
How many times did you interact with Yokobo?* number

Additional remarks

Do you have any additional remarks or comment text
about Yokobo??
1 The student ID is used to match the answers of the three questionnaires.
2 Only for QS
3 The number refers to the Figure D.1
4 Only for QW1 and QW2
5 Only for QW2
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Appendix D — Questionnaires and Data of the Technical Experiment

Figure D.1: Picture of Yokobo used in the questionnaire to know the vocabulary used by participants
to describe the robot.

Table D.2: Questions in QW2 for the selected participants. The text in square brackets is added for this
article and was not present in the questionnaire.

Question Answer choice
Messages

How many messages did you received from your partner? number

How many messages did you sent to your partner? number

How would you rate the recording of a message? [semantic Hard (1) - Easy (5)

scale]

How much did you feel the existence of your partner during Does not exist (1) - Exists (5)
this week? [Likert scale|

Do you think Yokobo helped you to feel your partner? [Likert Not at all (1) - A lot (5)
scale]

What does Yokobo represent in the connection with your part- text
ner?
Did you have the impression that the movement of the robot text

was Yokobo’s behaviours or was coming from your partner?
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Table D.3: SUS questions in QW2 for the selected participants, using a Likert scale

Question

Answer choice

1. I think I would like to use Yokobo frequently
2. I found Yokobo unnecessarily complex

3. I though Yokobo was easy to use

4. T think I would need the support of a technical
person to be able to use Yokobo

5. I found the various functions in Yokobo were
well integrated

6. I thought there was too much inconsistency in
Yokobo

7. 1 would imagine that most people would learn
to use Yokobo very quickly

8. I found Yokobo very cumbersome to use

9. I felt very confident using Yokobo

10. I need to learn a lot of things before I could
get going with Yokobo

Strongly Disagree (1) - Strongly Agree (5)
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Appendix D — Questionnaires and Data of the Technical Experiment

D.2

Graffiti wall

Sample of the answers to the graffiti wall.

Question 1

1.
2.

3.

What do you think about Yokobo? Can you give us your first impressions?

(E2) Friendly (Yokobo seems to greet me).

(E2) R=Hha] & LRI/ 1Y) - 12\ (Tt looks cute, it looks like a small
animal overall) W& KLEDh*E vy, FHZHC L HTHE-TETES LW

(The shimmering LED is beautiful, and when I move around, It can follow me with
its eyes and it’s adorable)

(E2) It feels that Yokobo notices you when you step close since the LED pattern and
color change. It also follows you with the camera which is cute. However, I wasn’t
too sure on how to interact and play with Yokobo.

Question 2

1.
2

3.
4.

For you, what Yokobo’s movements express?

E1) KOt Tik < A=\ (It moves like a fish in an aquarium)

(

(E1) T felt being greeted since the robot motion looked a bit like waving or bowing
(kind of a puppy welcoming their owner)
(
(

E2) Exciting

E2) stare at me, nod

Question 3

Just now you approached Yokobo and were close to it, what was your experience?

(E1) I was curious about what it would have done and waited a bit to see its "reaction"

(E1) The robot was tilting and moving its head in a offering kind of manner. I was
able to feel that it detects me and can change how to behave wen the situation changes

(B2) By b e 33 2=r—2 32T 52 L HBHHIH TOREED ST ED -

7= (It was my first time to communicate with a robot and it was fresh and cute.)

(E2) BIMICEIZICHE D H Y . Buwiz. GO TEI<oONnMHE» /2. I was

surprised that there was a wide range of movements. It was fun to move together.)
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Question 4a (participants with a tag)

Do you feel connected to Yokobo and/or your partner? After 2 weeks, does Yokobo bring
something to your daily life?

1. (E1) It’s nice to have a welcoming "partner" when entering the lab. I think since I
know there might be a message from my partner, I am not sure if it’s Yokobo moving
or my partner, but in principle I think more that it’s my partner. Not knowing who
he/she is, make me feel a bit less connected, I think. So more connected to Yokobo
than my partner.

2. (E2) I couldn’t feel the exist of partner (sic)
3. (E2) MlFh21 5 &) DI h 5 7= (1 understand there was a partner)
4. (E2) ] hstf X /= (something happened)

Question 4b (participants without a tag)

Do you feel close to Yokobo? After 2 weeks, does Yokobo bring something to your daily
life?

1. (E1) AoFHZEWTILNE=H. 4129572 3>=FETE /= (I was able to

feel the interaction because it turned to people)
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Appendix E

BeWoDa

E.1 Algorithm

Algorithm E.1: DQL - main function

1 FUNCTION main()

2 env <« new Environment ()

3 dql < new Deep-Q-Learning()

4

5 FOR EACH nbr_trial

6 state < env.reset()

7 score < O

8 REPEAT

9 action < dql.choose_action(state)
10 reward, newState, done < env.step(action)
11 dql.learn(newState)

12 state < newState

13 score < score + reward

14 UNTIL done

15 END FOR EACH

16 END FUNCTION

14
15
16
17

Algorithm E.2: DQL - Deep-Q-Learning class

CLASS Deep-Q-Learning()
method
FUNCTION choose_action
input state (list)
output action (int)
END FUNCTION
FUNCTION learn
# use the new state to update the NN
input newState (list)
END FUNCTION
END CLASS

o
H O © W N oA W N R

o B I N A

o e
VR O ©

=
w

E.2 Results

e e
IS

6
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Algorithm E.3: DQL - Environment class

CLASS Environment ()
attribute

robot < new Yokobo()
nep < new Nep()

method

FUNCTION reset()
output state (list)
robot.reset ()
state < nep.read_data() + robot.pad()
END FUNCTION
FUNCTION step
# apply the action and observe new state, if

it is a terminal state, then the step is 'done'

input action (int)
output reward (int), newState (list),
done (bool)
END FUNCTION

END CLASS

Algorithm E.4: DQL - Yokobo class

CLASS Yokobo ()
attribute

motors < list of new Motor()

method

FUNCTION reset()
motors.set_to_origin()

END FUNCTION

FUNCTION pad

# Algorithm described in section 7.2.5
output pad (int)

END FUNCTION

FUNCTION move
input command (list)
motors.set_command (command)

END CLASS
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Figure E.1: The angular position (in radian) of each motor over steps, for some episodes
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Figure E.2: The PAD of Yokobo over steps, for some episodes
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Figure E.3: Posture of Yokobo with the colour of the light for four consecutive steps at episode 0
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